Влияние энергетики на экологию


Мир современной энергетики является основополагающим условием для развития разнообразных отраслей промышленности. Промышленно развитые страны отличаются стремительными темпами развития энергетики, которые опережают темпы развития отраслевой промышленности.

Экология и энергетика

В свою очередь, энергетика является серьезным источником неблагоприятного воздействия на человека и окружающую среду. Это влияние сказывается на атмосфере, за счет высокого потребления кислорода, выбросов газов, твердых частиц и влаги.

Гидросфера страдает из-за потребления воды на нужды энергетики, создания искусственных водохранилищ, сбросов жидких отходов, нагретых и загрязненных вод. Существенно изменяется и литосфера по причине чрезмерного потребления ископаемых топливных ресурсов, изменения ландшафтов, выброса токсичных веществ.

Влияние на водные ресурсы


Современные гидроэнергетические технологии отличаются, как преимуществами, так и недостатками. К примеру, количество произведенной электроэнергии зависит от водных ресурсов, которые могут истощаться во время засухи.

Это играет огромную роль для энергетического комплекса страны. Энергетика и экология – сомнительное сочетание, когда речь идет о строительстве плотин, переселении жителей, заилении водохранилищ, пересыхании русел рек, затоплении огромных территорий, значительной затратности проектов.

  • Экспертами был изучен ядовитый смог в Нижнем Тагиле, и они выяснили, что этот смог может привести к коме
  • Экология на старте
  • Экологическое недоразумение, или большая беда на Украине
  • Экологи попросили у Путина, чтобы он не размещал ядерные отходы под Красноярском
  • Экологи попросили не отравлять мазутом горячую воду
  • Экологами был внесен в черный список Толочинский консервный завод
  • Целлюлозно-бумажный комбинат в Байкальске, перенесут в другое место
  • Химикаты, которыми устраняют утечки нефти, опаснее самой нефти

Изменение уровня воды в реках приводит к полной гибели растительности, плотины становятся серьезным препятствием для миграции рыб, ГЭС многокаскадного типа уже превратили реки в озера, перерастающие в болота. Россия получает при использовании гидроресурсов не более 20% энергии, а при строительстве только одной ГЭС затапливается более 6 миллионов гектар. Таким образом, энергетика влияет на экологию, и это неравноценный по потерям для природы обмен.

Истощение, загрязнение


Что касается влияния энергии ТЭС на экологию, то можно отметить, как главный фактор, выделение вредных веществ в виде закиси углерода, соединений азота, свинца и значительного количества тепла. 5 миллиардов тонн угля ежегодно сжигается и более трех миллионов тонн нефти, что сопровождается гигантским выбросом в атмосферу Земли тепла.

Нынешние темпы потребления угля приведут к неминуемому истощению ископаемого через 150 – 200 лет, нефти — через 40 – 50 лет, газа, предположительно, — через 60. Полный спектр работ по добыче, транспортировке и сжигании данного вида топлива сопровождается процессами, ощутимо влияющими на загрязнение окружающей среды.

Влияние энергетики на экологию связано с добычей угля и засолением водных ресурсов. Помимо этого, откаченная вода содержит радон и изотопы радия. А атмосфера загрязняется продуктами сжигания угля в виде оксидов серы – 120 тысяч тонн, окислов азота – 20 тысяч тонн, пепла 1500 тонн, оксида углерода – 7 миллионов тонн.

Кроме того, происходит при горении образование более 300 тысяч тонн золы, включающей в себя 400 тонн токсичных металлов в виде ртути, мышьяка, свинца и кадмия. Работу ТЭС можно сопоставить, по выбросам в атмосферу радиоактивных веществ, с работой АЭС аналогичной мощности.

Ежегодные выбросы оксидов углерода способствуют повышению температуры на Земле, что может привести к вполне предсказуемым климатическим изменениям.


Влияние энергетики на экологию, когда речь идет о нефти и газе, достигло катастрофических и глобальных масштабов. Ученые утверждают, что выбросы от сжигания нефти и угля ежегодно влияют на состояние здоровья людей примерно так же, как авария на Чернобыльской АЭС. Этот «тихий Чернобыль», обладает последствиями, результаты которого пока невидимы, но они целенаправленно и постоянно уничтожают экологию.

Как получить энергию без вреда для экологии

Солнце – неисчерпаемый источник тепла. Среди существующих традиционных видов альтернативной энергетики (энергия волн, земли, ветра, приливов, геотермальная энергия, а также энергия из газа от мусорных свалок и навоза на фермах) основным видом является энергия Солнца.

Человеческий мир, постоянно находящийся в поисках энергии, только недавно обратил внимание на источник энергетического изобилия. Использование энергии Солнца для нужд промышленности на данном этапе обходится дорого.

Но тенденция снижения цен за последние годы существенно снизилась и за последние пять лет стала в два раза ниже первоначальной. Изменение и усовершенствование технологий уже завтра может сделать солнечную энергию доступной и неограниченной.

Альтернативная энергетика и экология: факты

  • Возобновляемые источники энергии в Шотландии приходятся на треть всего объема вырабатываемой энергии.

  • К 2027 году Евросоюзом планируется довести долю альтернативной энергетики до 20%.
  • Альтернативная энергетика способствует созданию рабочих мест.
  • Использование отходов жизнедеятельности крупного рогатого скота в целях переработки в биогаз даст возможность обеспечить электроэнергией жителей планеты и сократить выбросы парниковых газов.
  • Альтернативная энергетика — более привлекательная отрасль для инвесторов, которые отдают ей предпочтение перед другими видами топлива.

Эти и многие другие факты могут обеспечить наши энергетические потребности без ущерба для экологии, что оздоровит нашу природу и население планеты.

Источник: zeleneet.com

Слайд 1

“ Энергетика и её влияние на экологию

Слайд 2

План. Энергетика и экология Карта энергосистемы России. Карта экологических проблем России. Чернобыльская авария. Радиационные загрязнения России. Саяно-Шушенская авария. Характер загрязнений и виды топлива. Влияние водохранилищ и гидроэлектростанций на природную среду. Вывод

Слайд 3

Энергетика и экология – две сферы без которых в данный момент не может жить человек. Но все-таки экологию мы должны ставить на первое место. Так как вред наносимый энергетикой экологии может быть невосполнимой потерей .

Слайд 4

ТЭС размещены практически повсеместно в освоенных районах, АЭС — главным образом в европейской части России, а крупнейшие ГЭС — в Восточной Сибири, которая обладает наибольшими гидроэнергоресурсами.


Слайд 5

15% территории России (по площади больше, чем Западная и Центральная Европа, вместе взятые), на которой сосредоточена основная часть населения и производства, находится в неудовлетворительном экологическом состоянии, экологическая безопасность здесь не гарантирована. Превышение допустимых концентраций вредных веществ отмечается в атмосферном воздухе 185 городов и промышленных центров с населением свыше 61 млн. человек (40% всего населения страны). Основными источниками загрязнения воздуха по прежнему являются предприятия черной и цветной металлургии, химии и нефтехимии, энергетики , целлюлозно-бумажной промышленности, а также автотранспорт. Особенно неблагоприятное положение наблюдается в городах Архангельске, Липецке, Москве, Норильске, Братске, Екатеринбурге, Каменске-Уральском, Кемерове, Красноярске, Нижнем Тагиле, Уфе, Стерлитамаке, Челябинске, Магнитогорске, Новокузнецке, Омске, Череповце.

Слайд 6

Чернобыльская АЭС Саяно-Шушенская ГЭС

Слайд 7

Атомные электростанции и экологические проблемы, возникающие при их эксплуатации.

Слайд 8

Чернобыльская АЭС 30 лет назад, 26 апреля 1986 года произошла крупнейшая в истории мировой атомной энергетики авария . Люди, проживавшие на территориях, прилежащих к месту трагедии, умирали от кровоизлияний и апоплексических ударов.


страдали ликвидаторы последствий аварии: из общего числа ликвидаторов в 600 000 около 100 000 человек уже нет в живых – они умерли от злокачественных опухолей и разрушения системы кроветворения. Ужасны последствия Чернобыльской катастрофы для детей. Задержка в развитии, рак щитовидной железы, психические расстройства и снижение сопротивляемости организма ко всем видам болезней . От Чернобыльской катастрофы пострадали не только люди – все живое на Земле почувствовало на себе смертельную силу радиации. В результате Чернобыльской катастрофы появились мутанты – рожденные с различными деформациями потомки людей и животных Чернобыльской катастрофы являются ужасающими свидетельствами человеческой халатности.

Слайд 9

Радиационное загрязнение окружающей среды представляет наибольшую опасность вследствие того, что один из основных источников этого вида загрязнения – ядерная энергетика в последнее время развивается наиболее быстрыми темпами. По оценкам экспертов, этот вид загрязнения среды в нашей стране находится на втором месте после химического загрязнения.

Слайд 10

Главная опасность от работающих АЭС — загрязнение биосферы плутонием. На Земле было не более 50 кг этого сверхтоксичного элемента до начала его производства человеком в 1941 году. Сейчас глобальное загрязнение плутонием принимает катастрофические размеры: атомные реакторы мира произвели уже много сотен тонн плутония – количество более чем достаточное для смертельного отравления всех живущих на планете людей. Кол-во кг плутония на планете.


Слайд 11

Влияние водохранилищ и гидроэлектростанций на природную среду.

Слайд 12

Саяно-Шушенская ГЭС 17 августа 2009 года Вред был нанесен попавшим в реку роторным маслом из разрушенных гидроагрегатов — всего в водах Енисея оказалось около 45 кубометров масла, которые растеклись по реке, образовав пятно протяженностью порядка 130 км. Но самыми серьезными были последствия для людей, которые на момент аварии находились на станции. Всего катастрофа унесла жизни 75 человек. Жертв могло быть значительно меньше, однако на момент аварии проводились ремонтные работы на гидроагрегате № 6, и большое количество людей — 63 человека — находились под полом машинного зала, в его внутренних помещениях. Хлынувшая из шахты ГА № 2 вода в считанные минуты затопила внутренние помещения, не дав людям никакого шанса на спасение. Авария на Саяно-Шушенской ГЭС стала крупнейшей в российской истории техногенной катастрофой на гидроэнергетическом объекте.

Слайд 13

Из-за большой площади зеркал водохранилищ наиболее крупных ГЭС России (Саяно-Шушенская, Красноярская, Усть-Илимская) ущерб наносимый природе значителен. Наиболее значимым фактором воздействия крупных гидроэлектростанций на экосистему водосброса является создание водохранилищ и затопление земель. Это вызывает изменение видового состава, численности биомассы растений, животных, формирование новых биоценозов.


Слайд 14

Еще одна экологическая проблема гидроэнергетики — низкое качество санитарно-технических работ при создании водохранилищ и сброс неочищенных стоков в водные объекты. Массовое размножение, «цветение» водорослей в неглубоких заболоченных водохранилищах делает их воду непригодной ни для промышленного использования, ни для хозяйственных нужд.

Слайд 15

И все же, рассматривая воздействие ГЭС на окружающую среду, следует отметить жизнесберегающую функцию ГЭС . Так выработка каждого млрд.кВт / ч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел/год.

Слайд 16

Какое влияние оказывает на характер вредных выбросов в атмосферу вид топлива, используемый на тепловых электростанциях.

Слайд 17

В тепло энергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции. В состав отходящих дымовых газов входят диоксид углерода, диоксид и триоксид серы и ряд других компонентов, поступление которых в воздушную среду наносит большой ущерб , как всем основным компонентам биосферы , так и предприятиям, объектам городского хозяйства, транспорту и населению городов .

Слайд 18

Сейчас наша техногенная цивилизация сформировала мощный поток восстановительных газов, в первую очередь вследствие сжигания ископаемого топлива в целях получения энергии. За 20 лет, с 1970 по 1990 год в мире было сожжено 450 млрд. баррелей нефти, 90 млрд. т угля, 11 трлн.куб.м газа. Выбросы в атмосферу электростанцией мощностью 1000МВт в год (в тоннах). Топливо Выбросы Углеводороды СО NOx SO² Частицы Уголь 400 2000 27000 110000 3000 Нефть 470 700 25000 37000 1200 Природный газ 34 — 20000 20,4 500


Слайд 19

Энергетические системы облегчают жизнь человека, но именно от них человек и страдает. Природа – это невосполнимое богатство которое мы, люди должны беречь .

Слайд 20

Вывод Электроэнергетический комплекс без преувеличения может быть назван одной из ключевых отраслей промышленности. Без электроэнергии невозможно производство в практически любой другой области. Перспективы развития энергетики , в первую очередь, связываются с разработкой эффективных альтернативных источников. Наиболее изученными направлениями в этой области являются: Биотопливо. Ветроэнергетика. Геотермальная энергетика. Гелиоэнергетика. Термоядерная энергетика (УТС). Водородная энергетика. Приливная энергетика.

Слайд 21

Источники информации : http://vestnikmgsu.ru/index.php/ru/archive/article/display/48/7 http://referator.com.ua/free/referat/216335_ekologicheskie_posledstviya_avarii_na_chernobylskoy_aes?page=2 http://armtorg.ru/news/6295/ http://www.f-mx.ru/bezopasnost_zhiznedeyatelnosti/radiacionno-opasnye_obekty.html http://referat.niv.ru/referat/009/00900065.htm https://yandex.ru/images/search?text= карты%20экология& stype=image&lr=213&noreask=1&source=wiz

Источник: nsportal.ru

Контрольные вопросы


  1. Что такое биосфера, чем она отличается от ноосферы?

  2. Какие существуют уровни экологических систем?

  3. Как может происходить взаимодействие человека с окружающей средой?

  4. Что такое АПФ?

  5. К какому АПФ по своему действию относится воздействие электрического тока на человека?

  6. К какому АПФ по своему действию относится воздействие вредных веществ на человека?

  7. К чему приводит воздействие на человека вредного АПФ?

  8. К чему приводит воздействие на человека опасного АПФ?

  9. Что такое загрязнение?

  10. Какие отрасли промышленности вносят основной вклад в загрязнение атмосферы, гидросферы?

Источник: StudFiles.net

Данная статья посвящена вопросам изучения взаимосвязи развития солнечной энергетики и угрозы роста экологических проблем. Актуальность выбранной темы обусловлена тем фактом, что основной фактор развития цивилизации на сегодняшний день — это непосредственно использование различных источников энергии. На данный момент ни для кого не секрет, что углеродные ресурсы весьма быстрыми темпами истощаются, и ежели поиски альтернативных источников энергии в ближайшем будущем не увенчаются успехом, то в таком случае перспективы цивилизации нашей абсолютно невелики. Так, из возможных преемников, что способны подхватить эстафету традиционной энергетики, самой привлекательной среди альтернативных энергетических источников является именно солнечная энергия, которую считают экологически чистой потому, что она уже миллиарды лет поступает на нашу Землю и, соответственно, все процессы земные с ней давно уже свыклись. Но в последние годы ученые все чаще ставят вопрос о огромном влиянии солнечной энергетики на экологию нашего мира. Так, потоки солнечной энергии просто обязаны быть взятыми людьми под контроль и использоваться максимально, но при сбережении уникального земного климата.

Ключевые слова: солнечная энергия, энергетика, экология, экологические проблемы, климат, окружающая среда.

 

Солнечная энергетика — это направление альтернативной энергетики, которое основано на непосредственном применении солнечного излучения в целях получения энергии. Солнечная энергетика применяет возобновляемые источники энергии, она является «экологически чистой», не производящей отходов в процессе использования. Производство энергии при помощи солнечных электростанций отлично сочетается с концепцией распределяемого производства энергии.

Энергетика в современном мире является основой развития основополагающих отраслей промышленности, определяющих общий прогресс производства. Во всех промышленных развитых государствах темпы развития энергетики опережают темпы развития остальных отраслей [4, с. 71].

Использования энергии является важным условием существования человечества. Доступная для потребления энергия всегда была необходима для удовлетворения многих потребностей человека, улучшения условий и увеличения продолжительности его жизни.

При этом энергетика — это один из очагов неблагоприятного воздействия на человека и окружающую среду. Она оказывает влияние на атмосферу (выбросы газов, потребление кислорода, влаги, твердых частиц), гидросферу (создание искусственных водохранилищ, потребление воды, сбросы нагретых и загрязненных вод, жидких отходов), на литосферу (изменение ландшафта, потребление ископаемых топлив, выбросы токсичных веществ).

В процессе производства фотоэлементов объем загрязнений не превышает допустимый уровень для производственных предприятий микроэлектронной промышленности. Фотоэлементы имеют заданный срок службы, который составляет 30–50 лет. Использование кадмия, при производстве некоторых видов фотоэлементов в целях повышения эффективности преобразования, образует сложный вопрос их обезвреживания и утилизации, который не имеет приемлемого решения с экологической точки зрения, хотя такие элементы распространены незначительно, и при современном производстве соединениям кадмия уже найдена достойная альтернатива [7, с. 102].

В последнее время усиленно развивается производство тонкоплёночных фотоэлементов, которые содержат в своем составе всего 1 % кремния относительно массы подложки, куда наносятся тонкие плёнки. Благодаря малому расходу материалов на поглощающий слой, тонкоплёночные кремниевые фотоэлементы обходятся дешевле в производстве, однако пока имеют неустранимую деградацию характеристик и меньшую эффективность во времени. Также распространено производство тонкоплёночных фотоэлементов на иных полупроводниковых материалах, например, Смиг, серьезный конкурент кремнию. Так, в 2005 году корпорация «Shell» приняла решение сконцентрировать производство на тонкоплёночных элементах, и продала бизнес по производству нетонкоплёночных (монокристаллических) кремниевых фотоэлектрических элементов [7, с. 107].

С учетом отмеченных факторов негативного влияния энергетики на окружающую среду, прирост потребления энергии особой тревоги у общественности не вызывал. Так продолжалось до 70-х годов, когда специалисты объявили о многочисленных данных, свидетельствующих о значительном антропогенном давлении на климат, что таит угрозу катастрофы при неконтролируемом возрастании уровня энергопотребления. С тех времен ни одна другая проблема такого пристального внимания не привлекает, как проблема настоящих и предстоящих изменений климата.

Принято считать, что одной из основных причин этого изменения стала энергетика. Под энергетикой понимается любая область деятельности человека, связанная с потреблением и производством энергии. Значительная часть энергетических ресурсов обеспечивает энергией, освобождающейся при сжигании ископаемого топлива (угля, газа и нефти), что приводит к выбросу огромного количества веществ в атмосферу.

Подобный упрощенный подход наносит реальный вред экономике всего мира и может нанести особенно сильный удар по экономике стран, которые не достигли требуемого для окончания индустриальной стадии развития уровня использования энергии. Россия относится в число этих государств. При этом на самом деле все обстоит сложнее. Кроме парникового эффекта, проблема которого по большему счету основывается на энергетике, на климат нашей планеты оказывает влияние множество естественных причин, к которым относятся в особенности солнечная активность, параметры орбиты Земли, вулканическая деятельность, автоколебания в системе «атмосфера и океан». Корректный анализ проблемы можно провести только с учетом целого комплекса факторов, при этом, конечно, необходимо уточнить вопрос, как будет реагировать мировое энергопотребление в будущем, на самом ли деле человечеству следует установить самоограничения в использовании энергии для того, чтобы избежать глобального потепления [1, с. 387].

Большинство объемов электроэнергии производится на ТЭС (тепловых электростанциях). Далее идут ГЭС (гидроэлектростанции) и АЭС (атомные электростанции).

В большинстве стран доля электроэнергии, вырабатываемой с помощью ТЭС, более 50 %. На ТЭС в качестве топлива обычно используются мазут, газ, уголь, сланцы. Ископаемое топливо можно отнести к невозобновимым ресурсам. В соответствии с оценками экспертов угля на планете может хватить только на 100–300 лет, природного газа на 40–120 лет, нефти на 50–80 лет [1, с. 388].

Параллельно с топливом ТЭС использует значительное количество воды. Коэффициент полезного действия (КПД) ТЭС составляет 36–39 %. Типичная ТЭС мощностью в 2 млн. кВт каждые сутки потребляет 18 000 тонн угля, 150 000 м3 воды, 2500 тонн мазута. На охлаждение обработанного пара на ТЭС применяется 7 млн. м3 воды (каждые сутки), что приводит к загрязнению водоема-охладителя [1, с. 388].

ТЭС свойственно высокое токсичное и радиационное загрязнение окружающей среды. Обусловлено это тем, что самый обычный уголь и его зола содержат примеси ряда токсичных элементов, в том числе урана, причем в значительных концентрациях. При строительстве ТЭС или даже их комплексов загрязнение более значительно. Могут появляться новые эффекты, такие, как обусловленные высокой скоростью сжигания кислорода по сравнению со скоростью его образования посредством фотосинтеза земных растений, или вызванные ростом концентрации в приземном слое углекислого газа [1, с. 389].

Из источников топлива самым перспективным является уголь (запасы угля огромны, если сравнивать с запасами газа и нефти). Основные запасы угля находятся в России, США и Китае. При этом в настоящее время большая часть энергии вырабатывается на ТЭС благодаря использованию нефтепродуктов. Так, структура запасов топлива не соответствует объемам его современного потребления. В перспективе — полный переход на новую структуру использования ископаемого топлива (угля) начнет вызывать значительные экологические проблемы, изменения в промышленности и материальные затраты. Ряд государств уже начал базовую перестройку энергетики [6, с.45].

Если анализировать ГЭС, то в данном случае основными достоинствами являются:

—          быстрая окупаемость (себестоимость около в 4 раза меньше, а окупаемость в 4 раза быстрее, нежели на ТЭС);

—          низкая себестоимость полученной электроэнергии;

—          высокая маневренность, а это очень важно во время пиковых нагрузок;

—          аккумуляция энергии.

Однако даже при полном применении потенциала всех рек планеты можно обеспечить максимум четверть современных потребностей человечества. На территории России используется не более 20 % гидроэнергетического потенциала. При этом в развитых странах эффективность применения гидроресурсов в 3 раза выше, то есть здесь у России видны определенные резервы. Однако строительство ГЭС (в особенности на равнинных реках) приведет ко многим проблемам с экологией. Водохранилища, необходимые для равномерной работы ГЭС, создают условия для изменения климата на территориях на расстоянии до сотен километров [3, с. 97].

Сине-зеленые водоросли, которые могут развиваться в водохранилищах оказывают влияние на процессы эвтрофикации (а именно ускоряют) и, к сожалению, это оказывает негативное влияние на качество воды, а также функционирование экосистем. Зачастую при строительстве водохранилищ имеет место быть нарушение естественных нерестилищ, а также подтопление большого количества плодородных земель. Также определенные изменения касаются уровня подземных вод.

Большую перспективность представляют ГЭС, которые строят на горных реках. Причина этого — больший энергетический потенциал рек горного плана по сравнению с обыкновенными, равнинными. Также, можно отметить, что при строительстве водохранилищ в горных районах не происходит затопления плодородных земель (в больших объемах).

Рассмотрим атомные электростанции, которые во время работы не вырабатывают углекислый газ. При этом, уровень загрязнения атмосферы другими элементами низкий, по сравнению с ТЭС. Можно отметить, что количество радиоактивных веществ, которые будут образовываться во время работы ничтожно мало. Уже длительный период времени АЭС считались полноценной заменой ТЭС, в плане экологичности и влияния на глобальное потепление. Но в тоже время, вопрос безопасности использования АЭС еще не до конца решен. Можно отметить, что процесс замены ТЭС на АЭС невозможно выполнить в массовом формате, ведь это сопровождается большим количеством финансовых затрат [5, с. 187].

Однако, Чернобыльская катастрофа значительно изменила понимание большинства население касательно безопасности проживания и использования АЭС. Именно поэтому, перспектива последовательной замены ТЭС на АЭС сошла на нет. Можно выделить несколько основных проблем использования АЭС:

1.    Безопасность работы реакторов. Все реакторы, которые используются в АЭС несут в себе потенциальную угрозу глобальной аварии. При этом, аварии подобные Чернобыльской катастрофе, могут произойти как из-за неправильной конструкции используемых реакторов, так из-за человеческого фактора, природных катаклизмов. Принцип самозащиты активной зоны реактора должен быть положен в принцип проектировки реактора при любых, даже самых худших вариантах развития событий. Ядерные технологии сложны и чтобы понять весь их потенциал должны пройти годы.

2.    При использовании АЭС всегда будет оставаться определенная неопределенность в вопросе безопасности, а решить их все заранее будет достаточно трудно. Большинство из них будет обнаруживаться во время использования реакторов.

3.    Снижении уровня эмиссии углекислого газа. Многие эксперты считают, что благодаря использованию атомных электростанций вместо тепловых удастся снизить количество выбросов углекислого газа — одного из главных газов, которые влияют на потепление климата. Но при этом, электростанции которые работают на комбинированном цикле (на природном газе) значительно экономичнее не только чем ТЭС, но и АЭС. При этом можно отметить, что при равных затратах на рабочий процесс удается снизить количество выбросов диоксида углерода (учитывается полный период работы).

4.    Вывод из эксплуатации некоторых реакторов АЭС. Есть пугающая статистика — в 2010 году большая половина рабочих реакторов была старше 25 лет. Именно поэтому в планах постепенный вывод реакторов из эксплуатации. Согласно данным, которые предоставила Всемирная ядерная ассоциация уже около 130 реакторов выведены из эксплуатации (либо уже в крайней фазе вывода). И можно выделить основную проблему, которая возникает во время этого процесса — утилизация радиоактивных отходов. Для безопасной утилизации их следует тщательно изолировать и сохранять длительный период, а расходы на это соизмеримы с тратами на строительство новой атомной электростанции.

5.    Опасность использования АЭС из-за возможного распространения ядерного оружия. За год работы один реактор будет производить то количество плутония, которого хватит для создания нескольких атомных бомб. В отработанном ядерном топливе, которое обязательно образуется после работы содержится множество других элементов. Именно поэтому МАГАТЭ прилагает максимум усилий, чтобы контролировать процесс использования отработанного ядерного топлива во всех странах, где работают АЭС [2, с. 70–71].

Небольшую атомную бомбу можно создать из отработанного ядерного топлива любого реактора. Но при этом, для создания полноценной ядерной бомбы нужно организовать сложное производство, привлечь множество специалистов, то для создания примитивных самодельных бомб ничего такого не необходимо — и в этом главная опасность. Именно данным аспектом могут воспользоваться террористы, приобретя необходимые материалы на черном рынке. И хотя ядерного взрыва от этого не возникнет, но территория, на которой используют данную «самоделку» будет достаточно сильно заражена радиацией.

Таким образом, считают, что возобновляемые источники энергии, такие, как ветровые источники энергии, геотермальные, солнечные, волновые и пр., модульные станции при использовании природного газа или топливных элементов, утилизирование отработанного пара, а также сбросного тепла — являются реальными способами защиты от климатических изменений без возникновения новых угроз для современного мира.

Подытоживая, отметим, что солнечными концентраторами вызываются огромные по площади затенения земель, что в последствии приводит к очень сильным изменениям условий почвенных, к изменениям в растительном мире и пр. Нежелательные экологические влияния на экологию в районах расположения энергетических станций вызывает мощный нагрев воздуха посредством прохождении солнечного излучения через него, сконцентрированного зеркальными отражателями, что приводит к изменениям влажности, теплового баланса, а также направления ветров. Кроме того, в определенных случаях возможны возгорание систем и перегревы. Применение низкокипящих жидкостей совместно с неизбежными утечками их в солнечных энергетических системах при длительной эксплуатации привести могут к сильному загрязнению питьевой воды. Также особую опасность представляют различные жидкости, которые содержат нитриты и хроматы, и которые являются высокотоксичными веществами.

 

Литература:

 

1.                  А. да Роза. Возобновляемые источники энергии. Физико-технические основы. — М.: Интеллект, МЭИ, 2010. — 704 с.

2.                  Кашкаров А. П. Ветрогенераторы, солнечные батареи и другие полезные конструкции. — М.: ДМК Пресс, 2011. — 144 с.

3.                  Минат В. И., Коломеец Н. В. Причины экологических бедствий. — М.: Реноме, 2010. — 220 с.

4.                  Панич Н. В., Тюкина Т. А. Экологические проблемы современности. — М.: МГИМО-Университет, 2012. — 102 с.

5.                  Смил В. Энергетика. Мифы и реальность. Научный подход к анализу мировой энергетической политики. — М.: АСТ-Пресс Книга, 2012. — 272 с.

6.                  Хайтун С. Д. «Тепловая смерть» на Земле и сценарий ее предотвращения. Часть 1. Энергетика, построенная на круговороте тепла и вечных двигателях 2-го рода. — М.: Либроком, 2009. — 192 с.

7.                  Хандогина Е. К., Герасимова Н. А., Хандогина А. В. Экологические основы природопользования. — М.: Форум, Инфра-М, 2010. — 160 с.

Источник: moluch.ru

 

Энергетика – один из источников неблагоприятного воздействия на окружающую среду и человека. Краткая экологическая характеристика основных объектов электроэнергетики, на базе которых может осуществляться ее развитие, свидетельствует о том, что все они оказывают то или иное отрицательное воздействие на окружающую среду. Практически нет объектов, которые совсем не влияют на окружающую среду.

Энергетика влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).

В то же время ни в коем случае нельзя считать все объекты электроэнергетики экологически равноценными. Наибольшее число отрицательных воздействий связано с развитием и эксплуатацией ТЭС.

Тепловые электростанции, сжигающие органические виды топлива, неблагоприятно влияют практически на все сферы окружающей среды и подвергают природу всем рассмотренным видам воздействий, включая выбросы радиоактивных веществ в составе летучей золы дымовых газов, которые по оценкам ряда специалистов превышают объем радиационных выбросов АЭС при их нормальной эксплуатации. Радиоактивные вещества, содержащиеся в первичном топливе, выносятся за пределы ТЭС с твердыми частицами (золой) и рассеиваются с дымовыми газами на огромной территории.

Отрицательное воздействие ТЭС усугубляется тем, что их работа должна обеспечиваться постоянной добычей топлива (топливная база), сопровождаемой дополнительными отрицательными воздействиями на окружающую среду: загрязнением воздушного бассейна, воды и земли; расходом земельных и водных ресурсов, истощением невозобновляемых запасов топлива (природных ископаемых ресурсов).

Загрязнение природной среды происходит также при транспортировании топлива, как в виде его прямых потерь, так и в результате расхода энергоресурсов на его перевозку, которая в среднем по территории России производится на расстоянии около 800 км.

Общая сумма позиций, по которым определяется отрицательное воздействие объектов электроэнергетики на окружающую среду, оказалась наибольшей для ТЭС, использующих органическое топливо.

По такой качественной оценке воздействия на окружающую среду на втором месте находятся атомные электростанции с их топливной базой. Среди факторов неблагоприятного воздействия АЭС такие грозные, как радиационная опасность.

Среди большого числа загрязнителей воздуха (более 200) выделяются пять основных, на долю которых приходится 90-95 % валового выброса вредных веществ в различных регионах страны. К ним относятся: твердые частицы (пыль, зола); оксиды серы; оксиды азота; оксиды углерода; углеводороды. В электроэнергетике к основным загрязняющим атмосферу веществам относятся три первых. Выбросы электроэнергетики достигают 1/3 общего количества вредных веществ, поступающих в атмосферу от стационарных источников.

Количество вредных веществ, выбрасываемых в атмосферу электростанциями за 10-летний период заметно снизилось, хотя выработка электроэнергии за тот же период возросла на 27 %. Это снижение обеспечено за счет изменения структуры генерирующих мощностей, совершенствования систем золоочистки, увеличения доли используемого природного газа, уменьшения количества сжигаемого на электростанциях высокосернистого мазута и снижения средней сернистости углей.

По уровню опасности основные выбросы электростанций относятся к III классу, т.е. не являются самыми опасными. Наряду с рассмотренными выше основными загрязняющими атмосферу веществами в дымовых газах электростанций имеется некоторое количество еще более вредных, в том числе канцерогенных, веществ, относящихся к I классу опасности. Установлено, что существенные количества канцерогенных веществ образуются при слоевом сжигании топлива. Сжигание же топлива в пылеугольных топках снижает количество выбросов канцерогенных веществ на четыре порядка. Бензапирен и другие канцерогенные вещества хоть и присутствуют в продуктах сгорания электростанций, но в таких небольших дозах, что определяют не более 3-4 % токсичности продуктов сгорания мощных ГРЭС.

Строительство крупных ТЭС, сжигающих твердое топливо в пылеугольных топках или природный газ, способно существенным образом улучшить канцерогенную обстановку в населенных пунктах за счет отказа от большого числа мелких котельных, в выбросах которых на четыре порядка больше канцерогенных веществ, чем у крупных электростанций. Тем более что и осуществляются эти выбросы через низкие трубы, не способствующие их достаточному рассеиванию.

При сгорании в топках котлов электростанций органического топлива образуются твердые и газообразные вредные вещества (так называемые «отходящие»), транспортируемые в составе дымовых газов по газоходам котла в дымовую трубу. Часть «отходящих» вредных компонентов поглощается другими составляющими дымовых газов (например, оксиды серы частично поглощаются золой) в котле и в процессе движения по газоходам. На выходе из дымовой трубы они улавливаются специальными устройствами, например золоуловителями. Все, что не поглощено и не уловлено, выбрасывается в атмосферу. Эти не уловленные и не поглощенные вредные вещества называются «вредными выбросами» или просто «выбросами».

С дымовыми газами ТЭС в атмосферу поступает большое количество различных вредных веществ. Самая большая доля их приходится на золу (твердые частицы), оксиды серы и азота, выбросы которых нормируются и рассчитываются на перспективу.

Другие выбросы (СО и СО2) не учитываются и не контролируются, т. к. в условиях нормальной эксплуатации монооксид углерода в выбросах ТЭС отсутствует. В связи с этим выбросы монооксида углерода не учитываются, как и выбросы диоксида СО2, объем которого очень велик. Этот газ не токсичен и в природном цикле служит источником получения кислорода в процессе фотосинтеза растений.

Ученые ряда стран отмечают нарастание концентрации СО2 в атмосферном воздухе, что, по-видимому, является результатом увеличения его выброса в связи с сжиганием все возрастающего количества органического топлива в мире, в том числе и на электростанциях, а также сокращения площади лесных массивов из-за интенсивной вырубки лесов во всех регионах Земли, и особенно в бассейне р. Амазонки, леса которого по праву считаются легкими планеты. Повышение концентрации СО2 в атмосфере планеты способно оказать глобальное влияние на климат планеты, создавая так называемый «парниковый эффект», ведущий к увеличению средней температуры воздуха, таянию ледников, повышению уровня мирового океана, затоплению обширных прибрежных районов Земли и другим неблагоприятным воздействиям.

При экологическом сопоставлении вариантов развития электроэнергетики следует учитывать, что при прочих равных условиях источники электроэнергии, сжигающие органические виды топлива и выбрасывающие большое количество СО2, имеют определенный минус по сравнению с электростанциями, принципиально не влияющими на создание «парникового эффекта». К их числу относятся в первую очередь гидроэлектростанции, а также АЭС и электростанций на альтернативных источниках.

Говоря о воздействии на температурные условия окружающей среды, уместно, по-видимому, остановиться на нарушениях теплового баланса в результате прямых выбросов теплоты, связанных с работой электростанций.

Практически вся тепловая энергия, выделяющаяся при использовании топлива (как органического, так и ядерного), идет на пополнение теплового баланса планеты и, естественно, баланса того локального района, в котором размещается электростанция. При сжигании органического топлива в окружающую среду дополнительно поступает та тепловая энергия, которая была накоплена в нем за миллионы лег существования Земли. Дополнительное поступление теплоты в окружающую среду связано в первую очередь с несовершенством процесса преобразования тепловой энергии в электрическую (КПД преобразования для обычных ТЭС находится на уровне 35 %, а для АЭС 30 %). Имеют место тепловые потери в электрических сетях (8-10 %), потери в процессе преобразования электроэнергии в энергию механическую, тепловую и т. д.

Сравнивая воздействие различных источников электроэнергии на окружающую среду, необходимо принимать во внимание только тот прирост теплоты в общем тепловом балансе Земли или района, который связан с различными условиями использования первичных энергоресурсов.

В этом отношении наиболее чистыми источниками являются гидроэлектростанции, которые практически не влияют на тепловой баланс Земли. Они, по существу, позволяют полезно использовать только ту возобновляемую часть солнечной энергии, которая постоянно поступает на Землю и формирует ее естественный тепловой баланс.

При создании гидроэлектростанций значительная часть потенциальной энергии водотока превращается в электрическую энергию, которая полезно расходуется в народном хозяйстве. Коэффициент полезного действия ГЭС высок и находится на уровне 90-95 %.

Тепловая электростанция для производства такого же количества электроэнергии нуждается в использовании невозобновляемой энергии, накопленной в топливе, которая в меру своих масштабов нарушает тепловой баланс планеты.

Тепловой баланс АЭС складывается еще хуже. Полезно используемая энергия современных АЭС составляет только 1/3 энергии, выделяемой в результате ядерных реакций. Энергетический блок АЭС мощностью 1 млн. кВт имеет тепловую мощность 3 млн. кВт. Соответственно при развитии АЭС возрастают размеры поступления теплоты в баланс Земли и концентрированно в тепловой баланс района размещения АЭС.

Огромное количество сбросной тепловой энергии ТЭС и АЭС является потенциальным ресурсом для его полезного использования.

Надежные способы оценки реального вклада выбросов теплоты ТЭС и АЭС в глобальное потепление климата на Земле в настоящее время отсутствуют. Поэтому при сопоставлении вариантов развития электроэнергетики вклад электростанций в нарушение теплового баланса Земли можно учитывать только качественно, имея в виду, что практически чистыми в этом отношении являются только гидроэлектростанции, а из ТЭС и АЭС предпочтение по этому показателю должно отдаваться ТЭС на органических видах топлива.

Наименьшее количество воздействий среди традиционных источников электроэнергии оказывают гидроэлектростанции. Это дает основание считать их наиболее экологически чистыми источниками электроэнергии из числа традиционных. При этом ряд сред (воздух, земля) вообще не загрязняется при работе гидроэлектростанций.

Большое преимущество ГЭС заключается также в том, что их воздействие ограничивается локальными зонами водохранилищ и что они используют только возобновляемую энергию водотока, не нуждаются в топливных базах и транспортировании топлива и не расходуют невозобновляемых полезных ископаемых.

Среди неблагоприятных воздействий ГЭС главным является затопление обширных территорий, которое и определяет экологическое лицо ГЭС.

Число отрицательных воздействий на окружающую среду нетрадиционных источников электроэнергии, как правило, невелико, за исключением геотермальных электростанций.

Увеличение мощности и выработки электроэнергии, необходимое для обеспечения прироста потребительского спроса на электроэнергию, создает предпосылки для усиления отрицательного воздействия электроэнергетики на окружающую среду. Дополнительные воздействия могут выражаться в изъятии земельных и водных ресурсов, загрязнении земель, вод и атмосферного воздуха.

В связи с этим одной из важнейших проблем экологической оптимизации развития электроэнергетики является всемерное сокращение этих воздействий с использованием различных природоохранных мероприятий.

Среди природоохранных мероприятий в электроэнергетике могут быть выделены две принципиально различные группы.

К первой из них относятся технические мероприятия, осуществляемые на объектах электроэнергетики и способствующие сокращению на них вредных выбросов и сбросов, снижению концентрации вредных веществ, а также ресурсосбережение, утилизация отходов производства и т. д.

Ко второй группе природоохранных мероприятий могут быть отнесены такие, которые обеспечивают снижение отрицательного воздействия на окружающую среду за счет оптимизации топливно-энергетического баланса электроэнергетики, оптимизации структуры и размещения электростанций.

Возможности первой группы природоохранных мероприятий определяются техническим прогрессом в энергомашиностроении, качеством разработки проектных решений по объектам электроэнергетики, полнотой учета при проектировании требований охраны окружающей среды, экономической и социальной приемлемостью предлагаемых решений.

Мероприятия второй группы исследуются и применяются с учетом того, что на объектах в полной мере реализуются мероприятия первой группы, т.е. мероприятия второй группы не заменяют, а дополняют комплекс мероприятий первой группы. Возможности второй группы природоохранных мероприятий в структурной оптимизации определяются качественными и количественными характеристиками топливно-энергетических ресурсов рассматриваемого региона, набором альтернативных источников, которые могут быть использованы для покрытия прироста электропотребления (ГЭС, АЭС, ГРЭС и т. д.), их размещением, экологическими и экономическими характеристиками.

На условия оптимизации развития и размещения объектов электроэнергетики существенное влияние может оказать состояние окружающей среды в районе, включая наличие земельных и водных ресурсов, уровень фонового загрязнения окружающей среды. Очевидно, что в случае повышенного уровня загрязненности окружающей среды могут возникнуть условия, при которых размещение здесь электростанции без нарушения санитарных норм окажется невозможным даже при использовании всех доступных мероприятий первой группы. В этом случае радикальным средством охраны природы в данном районе может быть вынос электростанции в другой, более благоприятный в экологическом отношении район, либо изменение вида топлива или типа электростанции. Важно при этом подчеркнуть, что в любых вариантах развития и размещения электростанций, при любом наборе объектных природоохранных мероприятий обязательным является обеспечение норм охраны природной среды и безопасности человека.

Из изложенного следует, что реализация системных мероприятий в значительной мере зависит от специфических особенностей рассматриваемого региона, которые в каждом отдельном случае должны изучаться индивидуально.

 

Источник: helpiks.org


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.