Какие экологические факторы вызывают саморегуляцию плотности популяции


Экспоненциальный и логистический рост численности популяцийи

Динамические показатели

Статические показатели популяции

Понятие о популяции.

Калькуляция производственной себестоимости изделия Б (выпуск 30 шт)

Калькуляция производственной себестоимости изделия А (выпуск 10 шт)

Задача. Определить производственную себестоимость готовой продукции

Калькуляция производственной себестоимости изделия Б (выпуск 20 шт)

Калькуляция производственной себестоимости изделия А (выпуск 20 шт)

Журнал хозяйственных операций за октябрь 2009 ᴦ.



№ п/п Содержание операции Дт Кт Сумма (тенге)
Оприходованы на склад материалы от поставщика     800 000
2. Отпущены материалы на производство продукции      
  А     400 000
  Б     200 000
Начислена зарплата рабочим      
  А     100 000
  Б     80 000
Начислен соц. налог по заработной плате      
  А     9 900
  Б     7 920
Начислена амортизация на цеховое оборудование     60 000
Списываются накладные расходы на производство продукции      
  А      
  Б      
Выпущена из производства готовая продукция по производственной себестоимости      
  А        
  Б        
Статьи затрат На весь выпуск изд. А (20 шт) На ед. изд.
     
     
     
     
     
     
Итого:    
Статьи затрат На весь выпуск изд. Б (20 шт) На ед. изд.
     
     
     
     
     
     
Итого:    


№ п/п Содержание операции Дт Кт Сумма (тенге)
Акцептован счёт поставщика за материалы      
  А (40т*10000)      
  Б (60т*15000)      
Ж/Д тариф (60 000)      
  А      
  Б      
2. Отпущены материалы на производство продукции      
  А 20 т      
  Б 36 т      
Начислена зарплата рабочим      
  А     200 000
  Б     100 000
Начислен соц. налог по заработной плате      
  А     19 800
  Б     9 900
Начислена арендная плата на цеховое оборудование     100 000
Списываются накладные расходы на производство продукции      
  А      
  Б      
Выпущена из производства готовая продукция по производственной себестоимости      
  А      
  Б      

Статьи затрат На весь выпуск изд. А (10 шт) На ед. изд.
     
     
     
     
     
     
Итого:    
Статьи затрат На весь выпуск изд. Б (30 шт) На ед. изд.
     
     
     
     
     
     
Итого:    

Биологический вид это совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, способных к скрещиванию с образованием плодовитого потомства, приспособленных к определœенным условиям жизни и занимающих в природе определœенную область (ареал). Виды часто занимают большой ареал, в пределах которого особи распределœены неравномерно, группами — популяциями. Целостность вида поддерживается связями между популяциями.


Популяция совокупность особей одного вида, способных к самовоспроизводству, которая длительно существует в определœенной части ареала относительно обособленно от других совокупностей того же вида. Контакты между особями одной популяции чаще, чем между особями разных популяций. К примеру, уровень панмиксии (свободного скрещивания) внутри популяции выше, чем между особями разных популяций. Популяция является структурной единицей вида и единицей эволюции.

Ареал.Пространство, на котором популяция или вид в целом встречается в течение всœей своей жизнедеятельности, принято называть ареалом областью распространения. Ареал должна быть сплошным или разорванным (дизъюнктивным), если между его частями возникают различные преграды (водные, орографические и др.), пространства, не заселœенные представителями данного вида. Выделяют различные центры ареалов: геометрический центр; центр возникновения вида в пределах ареала; центр обилия — часть ареала, на которой сосредоточено наибольшее количество особей.

Учитывая зависимость отвеличины ареала и характера распространения различают космополитов, убиквистов, эндемиков.


trong>Космополиты виды растений и животных, представители которых встречаются на большей части обитаемых областей Земли (к примеру, комнатная муха, серая крыса). Убиквисты виды растений и животных с широкой экологической валентностью, способны существовать в разнообразных условиях среды, имеют обширные ареалы (к примеру, тростник обыкновенный, волк). Эндемики— виды растений и животных, которые имеют небольшие ограниченные ареалы (часто встречаются на островах океанического происхождения, в горных районах и изолированных водоемах).

Для животных также различают трофический и репродуктивный ареалы, между которыми существует связь в виде путей пролета для птиц или путей миграции для некоторых млекопитающих и рыб.

Классификация популяций.Популяции различаются по размерам и степени генетической Классификациясамостоятельности, длительности существования, способу размножения особей и т.д.

По размерам занимаемой популяцией территории и степени связи между особями различают элементарные (локальные), экологические и географические популяции. Элементарная (локальная) популяция элементарная группировка особей, характеризующаяся практически полной панмиксией.

Экологическая популяция совокупность пространственно смежных элементарных популяций.


Географическая популяция совокупность групп пространственно смежных экологических популяций.

По способности к самовоспроизведению и самостоятельной эволюции популяции бывают перманентные (постоянные) и темпоральные (временные).

Перманентные (постоянные) — популяции, относительно устойчивые в пространстве и во времени, способные к неограниченно длительному самовоспроизведению, являются элементарными единицами эволюции.

Темпоральные (временные) — популяции, неустойчивые в пространстве и во времени, неспособные к длительному самовоспроизведению, с течением времени либо преобразуются в перманентные, либо исчезают.

По способу размножения популяции делят на панмиктические, клональные и клонально-панмиктические.

Панмиктические популяции состоят из особей, размножающихся половым путем, для которых характерно перекрестное оплодотворение.

Клональные популяции состоят изособей, для которых характерно только бесполое размножение. Клонально -панмиктические популяции образованы особями с чередованием полового и бесполого размножения.

Популяции, будучи групповыми объединœениями, обладают рядом специфических свойств, которые не присущи каждой отдельной особи: численность, плотность, рождаемость, смертность, скорость роста и др.
Размещено на реф.рфВместе с тем, популяции свойственна определœенная организация: половая, возрастная, генетическая, пространственно-этологическая и другие структуры.


Количественные показатели (характеристики) популяции можно разделить на статические и динамические. Статические показатели характеризуют состояние популяции на данный момент времени. Основные из них: численность, плотность, а также показатели структуры.

Популяция характеризуется определœенной структурной организацией — соотношением групп особей по полу, возрасту, размеру, генотипу, распределœением особей по территории и т.д. В связи с этим выделяют различные структуры популяции: половую, возрастную, размерную, генетическую, пространственно-этологическую и др.
Размещено на реф.рфСтруктура популяции формируется, с одной стороны, на базе общих биологических свойств вида, с другой стороны, под влиянием факторов среды, ᴛ.ᴇ. имеет приспособительный характер.

Генетическая структура — соотношение в популяции различных генотипов и аллелœей. Совокупность генов всœех особей популяции называют генофондом. Генофонд характеризуют частоты аллелœей и генотипов. Частота аллеля — это его доля во всœей совокупности аллелœей данного гена. Сумма частот всœех аллелœей равна единице:

Р + q = 1,

где р — доля доминантного аллеля (A); q — доля рецессивного аллеля (а).

Зная частоты аллелœей, можно вычислить частоты генотипов в популяции:


(р + q)2 = p2 + 2pq+q2= 1,

где р и q — частоты доминантного и рецессивного аллелœей соответственно, р2частота гомозиготного доминантного генотипа (/4/4), 2pq — частота гетерозиготного доминантного генотипа (Аа), q2частота гомозиготного рецессивного генотипа (аа).

На основании закона Харди-Вайнберга, относительные частоты аллелœей в популяции остаются неизменными из поколения в поколение. Закон Харди-Вайнберга справедлив, в случае если соблюдаются следующие условия: 1) популяция велика; 2) в популяции осуществляется свободное скрещивание; 3) отсутствует отбор; 4) не возникает новых мутаций; 5) нет миграции новых генотипов в популяцию или из популяции.

Очевидно, что популяций, удовлетворяющих этим условиям в течение длительного времени, в природе не существует. На популяции всœегда действуют внешние и внутренние факторы, нарушающие генетическое равновесие. Длительное и направленное изменение генотипического состава популяции, ее генофонда получило название элементарного эволюционного явления. Без изменения генофонда популяции невозможен эволюционный процесс.

Факторы, изменяющие генетическую структуру популяции, следующие: 1) мутации — источник возникновения новых аллелœей; 2) неравная жизнеспособность особей (особи подвергаются действию отбора); 3) неслучайное скрещивание (к примеру, при самооплодотворении частота гетерозигот постоянно падает); 4) дрейф генов — изменение частоты аллелœей случайные и независящие от действия отбора (к примеру, вспышки заболеваний); 5) миграции — отток имеющихся генов и (или) приток новых.

Динамические показатели популяции: рождаемость, смертность, скорость роста популяции

Количественные показатели популяции можно разделить на статические и динамические.

Динамические показатели популяции отражают процессы, протекающие в популяции за определœенный промежуток времени. Основные из них: рождаемость, смертность, скорость роста популяции.

Для характеристики динамических показателœей популяции используют следующие обозначения: — N — число организмов;

t — время;

—∆/V/∆f — средняя абсолютная (общая) скорость изменения числа организмов за определœенный период времени;

—∆N/(∆t) — средняя удельная скорость изменения числа организмов в расчете на 1 особь за определœенный период времени.

При математическом моделировании в экологии часто крайне важно знать не только среднюю скорость, но и мгновенную скорость изменения числа организмов в тот или иной момент времени (за бесконечно малый промежуток времени). Когда ∆f стремится к нулю (∆f —> 0) символ А заменяют на d. Тогда:

—dN/∆t — мгновенная абсолютная (общая) скорость изменения числа организмов за единицу времени в некоторый момент;

dN/ (Ndt) — мгновенная удельная скорость изменения числа организмов в расчете на 1 особь за единицу времени в некоторый момент.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, скорость рождаемости, скорость смертности и скорость роста популяции бывают средними и мгновенными. Далее по тексту подразумевается мгновенная скорость, однако слово ʼʼмгновеннаяʼʼ сознательно опущено, чтобы не перегружать текст.

Рождаемость (скорость рождаемости) ~ число новых особей, появившихся в популяции за единицу времени в результате размножения.

Различают максимальную и фактическую рождаемость. Максимальная рождаемость — максимальная реализация возможности рождения при отсутствии лимитирующих факторов среды. Фактическая рождаемость — реальная реализация возможности рождения.

Различают абсолютную и удельную рождаемость. Абсолютная (общая) рождаемость, или скорость рождаемости, выражают отношением:

dNn / dt,

где dNnчисло особей (яиц, семян и т.п.), родившихся (отложенных, продуцированных и т.д.) за некоторый промежуток времени dt.

Удельная рождаемость (о) — отношение скорости рождаемости к исходной численности (N):

Ь = dNn /(Ndt).

Эта величина зависит от интенсивности размножения особей: для бактерий — час, для фитопланктона — сутки, для насекомых — неделя или месяц, для крупных млекопитающих — год.

Смертность (скорость смертности) — число особей, погибших в популяции за единицу времени (от хищников, болезней, старости и других причин). Смертность — величина обратная рождаемости.

Различают минимальную и фактическую смертность. Минимальная смертность — минимально возможная величина смертности. Фактическая смертность — реальная величина смертности.

Различают абсолютную и удельную смертность. Абсолютная (общая) смертность или скорость смертности, выражают отношением:

где dNmчисло особей, погибших за промежуток времени dt.

Удельная смертность (d) — отношение скорости смертности к исходной численности (N):

d = dNm /(Ndt).

Скорость роста популяции — изменение численности популяции в единицу времени. Скорость роста популяции должна быть положительной, нулевой и отрицательной. Она зависит от показателœей рождаемости, смертности и миграции (всœелœения — иммиграции и выселœения — эмиграции). Увеличение (прибыль) численности происходит в результате рождаемости и иммиграции особей, а уменьшение (убыль) численности — в результате смертности и эмиграции особей.

Различают абсолютную и удельную скорость роста популяции.

Абсолютная (общая) скорость роста выражают отношением:

dN/dt,

где dN— изменение численности популяции за промежуток времени dt. У дельная скорость роста — отношение скорости роста к исходной численности (N):

dN/(Ndt).

При отсутствии лимитирующих факторов среды удельная скорость роста равна величинœе г, которая характеризует свойства самой популяции и принято называть удельной (врожденной) скоростью роста популяции или биотическим потенциалом вида:

г = dN/(Ndt) или dN/dt = rN.

Величина биотического потенциала очень различается у разных видов. К примеру, самка косули способна произвести за жизнь 10—15 козлят, трихина отложить 1,8 тыс. личинок, самка медоносной пчелы — 50 тыс. яиц, рыба-луна — до 3 млрд икринок.

При этом в природе, в связи с действием лимитирующих факторов, биотический потенциал популяции никогда не реализуется полностью. Его величина обычно складывается как разность между рождаемостью и смертностью в популяции:

r = Ь — d,

где Ь — число родившихся, d — число погибших особей в популяции заодин и тот же период времени.

Когда b = d, r = 0 и популяция находится в стационарном состоя­нии. Когда b > d, г > 0, численность популяции увеличивается. Когда b < d, r < 0, численность популяции сокращается. Формула d = b — r позволяет определить смертность, которую трудно измерить непос­редственно, а определить rдостаточно просто непосредственными

наблюдениями.

Скорость роста должна быть выражена в виде кривой роста популяции (рис. 5). Существует две основные модели роста популяции: J-об-разная и S-образная.

Какие экологические факторы вызывают саморегуляцию плотности популяции

Рис. 5. Кривые роста численности популяций:

1 — J-образная кривая;

2 — S-образная (логистическая) кривая;

К — емкость среды.

J-образная кривая отражаечт неограниченный экспоненциальный рост численности популяции, не зависящий от плотности популяции. ‘, Такой тип роста возможен пока биотический потенциал популяции (г) реализуется полностью. Это продолжается пока низка конкуренция за ресурсы. При этом после превышения емкости среды (предельной плотности насыщения, предельной численности) (К) произойдет резкое снижение численности.

S-образная (сигмоидная, логистическая) кривая отражает логистический тип роста͵ зависящего от плотности популяции, при котором скорость роста популяции снижается по мере роста численности (плотности). Скорость роста снижается вплоть до нуля при достижении предельной численности.

Гомеостаз популяции поддержание определœенной численности (плотности). Изменение численности зависит от целого ряда факторов среды — абиотических, биотических и антропогенных. При этом всœегда можно выделить ключевой фактор, наиболее сильно влияющий на рождаемость, смертность, миграцию особей и т.д.

Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые от плотности факторы изменяются вместе с изменением плотности, к ним относятся биотические факторы. Независимые от плотности факторы остаются постоянными с изменением плотности, это абиотические факторы.

Популяции многих видов организмов способны к саморегуляции своей численности. Выделяют три механизма торможения роста численности популяций:

1)при возрастании плотности повышается частота контактов междуособями, что вызывает у них стрессовое состояние, уменьшающее рождаемость и повышающее смертность;

2)при возрастании плотности усиливается эмиграция в новые местообитания, краевые зоны, где условия менее благоприятны и смертность увеличивается;

3)при возрастании плотности происходят изменения генетического состава популяции, к примеру, быстро размножающиеся особзаменяются медленно размножающимися.

Понимание механизмов регуляции численности популяций чрезвычайно важно для возможности управления этими процессами. Деятельность человека часто сопровождается сокращением численности популяций многих видов. Причины этого в чрезмерном истреблении особей, ухудшении условий жизни вследствие загрязнения окружающей среды, беспокойства животных, особенно в период размножения, сокращение ареала и т.д. В природе нет и не должна быть ʼʼхорошихʼʼ и ʼʼплохихʼʼ видов, всœе они необходимы для ее нормального развития. Сегодня остро стоит вопрос сохранения биологического разнообразия. Сокращение генофонда живой природы может привести к трагическим последствиям. Международный союз охраны природы и природных ресурсов (МСОП) издает ʼʼКрасную книгуʼʼ, где регистрирует следующие виды: исчезающие, редкие, сокращающиеся, неопределœенные и ʼʼчерный списокʼʼ безвозвратно исчез­нувших видов.

В целях сохранения видов человек использует различные способы регулирования численности популяции: правильное ведение охотничьего хозяйства и промыслов (установление сроков и угодий охоты и отлова рыбы), запрещение охоты на некоторые виды животных, регулирование вырубки леса и др.

В то же время деятельность человека создает условия для появления новых форм организмов или развития старых видов, к сожалению, часто вредных для человека: болезнетворных микроорганизмов, вредителœей сельскохозяйственных культур и т.д.

Вопросы для самоконтроля.

1. Каково место популяций в биоте Земли?

2. Что отражают статические показатели популяции?

3. Почему толерантность популяции к факторам среды значительно шире, чем у особи, и каково экологическое значение этого явления?

4. Что отражают динамические показатели популяции?

5. Что принято понимать под продолжительностью жизни вида? ʼʼДемографические таблицыʼʼ и кривые выживания.

6. Каковы экологические причины, вызывающие рост численности популяции по экспоненте и по логистической кривой?

7. В чем суть экологической стратегии выживания?

8. Как классифицируются экологические факторы, регулирующие плотность популяции?

9. Какие экологические причины вызывают саморегуляцию плотности популяции?

10. В чем причины таких стихийных экологических бедствий, как ʼʼнашествиеʼʼ саранчи?

Источник: referatwork.ru

Ресурсная регуляция

Популяции видов с малой продолжительностью жизни, обладающие высокой репродуктивной способностью, обычно наиболее чувствительны к изменениям абиотической среды и ресурсообеспеченности. В первую очередь, это бактерии. Их численность способна меняться в тысячи раз за очень короткие сроки. Среди «внутренних» механизмов им свойственна лишь реакция на загрязнение окружающей среды продуктами собственного метаболизма, что может вызвать прекращение роста даже при наличии достаточного количества ресурсов. Сходная ситуация прогнозируется учеными и для человечества, как реакция на загрязнение среды.

Для позвоночных ресурсная регуляция в целом малохарактерна, но может наблюдаться при их акклиматизации на территориях, где отсутствуют естественные враги и конкуренты.

Биотическая регуляция

Хотя математические модели взаимообусловленных колебаний численности хищника и жертвы хорошо известны, в реальных экосистемах хищники играют заметную роль в управлении популяциями лишь немногих видов. Это, в первую очередь, крупные растительноядные млекопитающие. Как правило, консументы, находящиеся на близком к своей пище уровне морфофизиологической организации, в большей степени воздействуют на ее численность, чем более эволюционно молодые группы.

Зависимость факторов от плотности популяции

Одни и те же факторы могут воздействовать на популяцию двумя противоположными способами.

Действие одних на скорость роста популяции не зависит от уровня ее численности, это факторы, не зависящие от плотности. В качестве примера можно привести климатические факторы.

Действие других факторов варьирует в зависимости от плотности популяции, при ее изменениях влияние таких факторов усиливается или ослабляется. Это зависящие от плотности факторы. Их связь с плотностью популяций может быть как положительной, так и отрицательной. Например, смертность обычно растет с увеличением плотности, а рождаемость снижается.

Бывает и более сложная зависимость – когда имеется определенная оптимальная плотность, а ее увеличение или снижение оказывается неблагоприятным. Например, репродуктивный успех сизого голубя при одиночном гнездовании и в очень больших колониях мал, при среднем размере колоний он существенно выше.

Воздействие на популяцию зависящих от ее плотности факторов обычно способствует достижению равновесной плотности, при которой популяция перестает расти. Обычно подобное характерно для воздействия биотических факторов: конкуренции, хищничества, эпизоотий.

Источник: spravochnick.ru

Контрольные вопросы и задания

4.1. Дайте определение популяции и ее свойств.

4.2. Почему элементарной частицей эволюции является популяция?

4.3. Сформулируйте правило Ю. Одума и теорию К. Фридерихса.

4.4. Каково место популяции на Земле?

4.5. Что отражают статистические показатели популяции?

4.6. Почему толерантность популяции к факторам среды значительно шире, чем у особи, и каково экологическое значение этого явления?

4.7. Каковы экологические причины, вызывающие рост численности популяций по экспоненте и логистической кривой?

4.8. В чем суть экологической стратегии выживания?

4.9. Какие экологические факторы вызывают саморегуляцию плотности популяции?

4.10. Что такое синантропные виды? Почему они являются «опасными» видами для человека?

ГЛАВА 5

ЭКОЛОГИЯ СООБЩЕСТВ (СИНЭКОЛОГИЯ)

Популяции разных видов в природных условиях объединяются в системы более высокого ранга – сообщества и биоценоз.[25]

Термин «биоценоз» был предложен немецким зоологом К. Мебиусом и обозначает организованную группу популяций растений, животных и микроорганизмов, приспособленных к совместному обитанию в пределах определенного объема пространства.

Любой биоценоз занимает определенный участок абиотической среды. Биотоп пространство с более или менее однородными условиями, заселенное тем или иным сообществом организмов.

Размеры биоценотических группировок организмов чрезвычайно разнообразны – от сообществ на стволе дерева или на болотной моховой кочке до биоценоза ковыльной степи. Биоценоз (сообщество) – не просто сумма образующих его видов, но и совокупность взаимодействий между ними. Экология сообществ (синэкология)[26] – это также научный подход в экологии, в соответствии с которым прежде всего исследуют комплекс отношений и господствующие взаимосвязи в биоценозе. Синэкология занимается преимущественно биотическими экологическими факторами среды.

В пределах биоценоза различают фитоценоз – устойчивое сообщество растительных организмов, зооценоз – совокупность взаимосвязанных видов животных и микробиоценоз – сообщество микроорганизмов:

ФИТОЦЕНОЗ + ЗООЦЕНОЗ + МИКРОБИОЦЕНОЗ = БИОЦЕНОЗ.

При этом в чистом виде ни фитоценоз, ни зооценоз, ни микробиоценоз в природе не встречаются, как и биоценоз в отрыве от биотопа.

Биоценоз формируют межвидовые связи, обеспечивающие структуру биоценоза – численность особей, распределение их в пространстве, видовой состав и тому подобное, а также структуру пищевой сети, продуктивность и биомассу. Для оценки роли отдельного вида в видовой структуре биоценоза используют обилие вида – показатель, равный числу особей на единицу площади или объема занимаемого пространства.

5.1. Трофическая структура биоценозов

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, – это пищевые связи хищника и жертвы: одни – поедающие, другие – поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т. п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

5.1.1. Пищевые цепи и сети

Пищевая цепь – это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.

Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего – вторичными консументами и т. д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 5.1).

Существуют два главных типа пищевых цепей – пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 5.1. Пищевые цепи биоценоза по Н. Ф. Реймерсу: обобщенная (а) и реальная (б). Стрелками показано направление перемещения энергии, а цифрами – относительное количество энергии, приходящей на трофический уровень

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй – пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий – хищники. Так, пастбищными пищевыми цепями являются:

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ → ДЕТРИТОФАГ → ХИЩНИК

Характерными детритными пищевыми цепями являются:

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого-то одного типа, в природе встречаются редко. Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 5.2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

5.1.2. Экологические пирамиды

Для наглядности представления взаимоотношений между организмами различных видов в биоценозе принято использовать экологические пирамиды, различая пирамиды численности, биомасс и энергии.

Рис. 5.2. Схема пастбищной и детритной пищевых цепей (по Ю. Одуму)

5.1.2.1. Пирамида численности

Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням:

• продуценты – зеленые растения;

• первичные консументы – травоядные животные;

• вторичные консументы – плотоядные животные;

• третичные консументы – плотоядные животные;

• n-е консументы («конечные хищники») – плотоядные животные;

• редуценты – деструкторы.

Консументы второго, третьего и более высоких порядков могут быть хищниками (охотиться, схватывая и убивая жертву), могут питаться падалью или быть паразитами. В последнем случае они по величине меньше своих хозяев, в результате чего пищевые цепи паразитов необычны по ряду параметров. В типичных пищевых цепях хищников плотоядные животные становятся крупнее на каждом трофическом уровне.

Рис. 5.3. Экологическая пирамида численности для луга, поросшего злаками: цифры – число особей

Рис. 5.4. Нарушенная (а) и перевернутая (б) пирамиды численности

Каждый уровень изображается условно в виде прямоугольника, длина или площадь которого соответствуют численному значению количества особей. Расположив эти прямоугольники в соподчиненной последовательности, получают экологическую пирамиду численности (рис. 5.3), основной принцип построения которой впервые сформулировал американский эколог Ч. Элтон.

Данные для пирамид численности получают достаточно легко путем прямого сбора образцов, однако существуют и некоторые трудности:

• продуценты сильно различаются по размерам, хотя один экземпляр злака или водоросли имеет одинаковый статус с одним деревом. Это порой нарушает правильную пирамидальную форму, иногда давая даже перевернутые пирамиды (рис. 5.4);

• диапазон численности различных видов настолько широк, что при графическом изображении затрудняет соблюдение масштаба, однако в таких случаях можно использовать логарифмическую шкалу.

5.1.2.2. Пирамида биомасс

Экологическую пирамиду биомасс строят аналогично пирамиде численности. Ее основное значение состоит в том, чтобы показывать количество живого вещества (биомассу – суммарную массу организмов) на каждом трофическом уровне. Это позволяет избежать неудобств, характерных для пирамид численности. В этом случае размер прямоугольников пропорционален массе живого вещества соответствующего уровня, отнесенной к единице площади или объема (рис. 5.5, а, б). Термин «пирамида биомасс» возник в связи с тем, что в абсолютном большинстве случаев масса первичных консументов, живущих за счет продуцентов, значительно меньше массы этих продуцентов, а масса вторичных консументов значительно меньше массы первичных консументов. Биомассу деструкторов принято показывать отдельно.

При отборе образцов определяют биомассу на корню или урожай на корню (т. е. в данный момент времени), которая не содержит никакой информации о скорости образования или потребления биомассы.

Рис. 5.5. Пирамиды биомасс биоценозов кораллового рифа (а) и пролива Ла-Манш (б): цифры – биомасса в граммах сухого вещества, приходящегося на 1 м2

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Поэтому при дальнейшем анализе могут возникнуть ошибки, если не учитывать следующее:

• во-первых, при равенстве скорости потребления биомассы (потеря из-за поедания) и скорости ее образования урожай на корню не свидетельствует о продуктивности, т. е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой, более высокий, за некоторый период времени (например, за год). Так, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса;

• во-вторых, продуцентам небольших размеров, например водорослям, свойственна высокая скорость роста и размножения, уравновешиваемая интенсивным потреблением их в пищу другими организмами и естественной гибелью. Поэтому продуктивность их может быть не меньше чем у крупных продуцентов (например, деревьев), хотя на корню биомасса может быть мала. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя мог бы поддерживать жизнь животных такой же массы.

Одним из следствий описанного являются «перевернутые пирамиды» (рис. 5.5, б). Зоопланктон биоценозов озер и морей чаще всего обладает большей биомассой, чем его пища – фитопланктон, однако скорость размножения зеленых водорослей настолько велика, что в течение суток они восстанавливают всю съеденную зоопланктоном биомассу. Тем не менее в определенные периоды года (во время весеннего цветения) наблюдают обычное соотношение их биомасс (рис. 5.6).

Рис. 5.6. Сезонные изменения в пирамидах биомассы озера (на примере одного из озер Италии): цифры – биомасса в граммах сухого вещества, приходящегося на 1 м3

Кажущихся аномалий лишены пирамиды энергий, рассматриваемые далее.

5.1.2.3. Пирамида энергий

Самым фундаментальным способом отражения связей между организмами разных трофических уровней и функциональной организации биоценозов является п и р а м и д а энергий, в которой размер прямоугольников пропорционален энергетическому эквиваленту в единицу времени, т. е. количеству энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за принятый период (рис. 5.7). К основанию пирамиды энергии можно обоснованно добавить снизу еще один прямоугольник, отражающий поступление энергии Солнца.

Пирамида энергий отражает динамику прохождения массы пищи через пищевую (трофическую) цепь, что принципиально отличает ее от пирамид численности и биомасс, отражающих статику системы (количество организмов в данный момент). На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей. Если учтены все источники энергии, то пирамида всегда будет иметь типичный вид (в виде пирамиды вершиной вверх), согласно второму закону термодинамики.

Рис. 5.7. Пирамида энергии: цифры – количество энергии, кДж-м -2r-1

Рис. 5.8. Экологические пирамиды (по Ю. Одуму). Без соблюдения масштаба

Пирамиды энергий позволяют не только сравнивать различные биоценозы, но и выявлять относительную значимость популяций в пределах одного сообщества. Они являются наиболее полезными из трех типов экологических пирамид, однако получить данные для их построения труднее всего.

Одним из наиболее удачных и наглядных примеров классических экологических пирамид служат пирамиды, изображенные на рис. 5.8. Они иллюстрируют условный биоценоз, предложенный американским экологом Ю. Одумом. «Биоценоз» состоит из мальчика, питающегося только телятиной, и телят, которые едят исключительно люцерну.

5.1.3. Закономерности трофического оборота в биоценозе

Живые организмы для своего существования должны постоянно пополнять и расходовать энергию. В пищевой (трофической) цепи, сети и экологических пирамидах каждый последующий уровень, условно говоря, поедает предыдущее звено, используя его для построения своего тела. Трофоэнергетические связи сообщества растений и животных в виде упрощенной схемы потоков на примере биоценоза Рыбинского водохранилища приведены на рис. 5.9.

Главный источник энергии для всего живого на Земле – Солнце. Из всего спектра солнечного излучения, достигающего земной поверхности, только около 40 % составляет фотосинтетически активная радиация (ФАР), имеющая длину волны 380–710 нм. Растения в процессе фотосинтеза усваивают лишь небольшую часть ФАР. Ниже приведены доли усваиваемой ФАР (в %) для различных экосистем.

Рис. 5.9. Схема потоков энергии в трофической сети биоценоза (по Н. В. Бутурину, А. Г. Поддубному): цифры – годичная продукция популяций, кДж/м2

Океан……………………………………до 1,2

Тропические леса…………………………..до 3,4

Плантации сахарного тростника и кукурузы

(в оптимальных условиях) …………………….. 3—5

Опытные системы с кондиционированными условиями среды по всем показателям (за короткие

периоды времени)…………………………..8—10

В среднем растительность всей планеты…………0,8–1,0

Первичными поставщиками энергии для всех других организмов в цепях питания являются растения. При дальнейших переходах энергии и вещества с одного трофического уровня на другой существуют определенные закономерности.

5.1.3.1. Правило десяти процентов

Р. Линдеман (1942) сформулировал закон пирамиды энергий, или правило 10 %:

с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице» продуцент – консумент – редуцент), в среднем около 10 % энергии, поступившей на предыдущий уровень экологической пирамиды.

На самом деле потеря бывает либо несколько меньшей, либо несколько большей, но порядок чисел сохраняется.

Обратный поток, связанный с потреблением веществ и продуцируемым верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее – не более 0,5 % (и даже 0,25 %) от общего ее потока, поэтому говорить о круговороте энергии в биоценозе не приходится.

5.1.3.2. Правило биологического усиления

Вместе с полезными веществами с одного трофического уровня на другой поступают и «вредные» вещества. Однако если полезное вещество при его излишке легко выводится из организма, то вредное не только плохо выводится, но и накапливается в пищевой цепи. Таков закон природы, называемый правилом накопления токсических веществ (биотического усиления) в пищевой цепи и справедливый для всех биоценозов.

Иначе говоря, если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, примерно в такой же пропорции увеличивается, что впервые было обнаружено в 50-х годах на одном из заводов комиссией по атомной энергии в штате Вашингтон. Явление биотического накопления нагляднее всего демонстрируют устойчивые радионуклиды и пестициды. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелируется с массой жиров (липидов), т. е. явно имеет энергетическую подоснову.

В середине 60-х годов появилось, казалось бы, неожиданное сообщение о том, что пестицид дихлордифенилтрихлорэтан (ДДТ) обнаружен в печени пингвинов в Антарктиде – месте, чрезвычайно удаленном от районов его возможного применения. От отравления ДДТ сильно страдают конечные хищники, особенно птицы, так на востоке США полностью исчез сапсан. Птицы оказались наиболее уязвимы в связи с вызываемыми ДДТ гормональными изменениями, влияющими на обмен кальция. Это приводит к утончению скорлупы яиц, и они чаще разбиваются.

Биотическое накопление происходит очень стремительно, например, в случае с пестицидом ДДТ, попавшим в воду болот при многолетнем их опылении с целью сокращения численности нежелательных человеку насекомых на Лонг-Айленде. Для данного случая содержание ДДТ в ррт[27] (по Ю. Одуму) приведено ниже для следующих объектов:

вода…………………………………0,00005

планктон ……………………………….. 0,04

планктоноядные организмы………………….0,23

щука (хищная рыба)………………………..1,33

рыба-игла (хищная рыба)…………………….2,07

цапля (питается мелкими животными)………… 3,57

крачка (питается мелкими животными)………… 3,91

серебристая чайка (падальщик)………………..6,00

крохаль (птица, питается мелкой рыбой)……….. 22,8

баклан (питается крупной рыбой) ……………… 26,4

Специалисты по борьбе с насекомыми «благоразумно» не применяли такие концентрации, которые могли бы быть непосредственно летальны для рыб и других животных. Тем не менее со временем было установлено, что в тканях рыбоядных животных концентрация ДДТ почти в 500 тыс. раз выше, чем в воде. В среднем, как и в приведенном примере, концентрация вредного вещества в каждом последующем звене экологической пирамиды примерно в 10 раз выше, чем в предыдущем.

Принцип биотического усиления (накопления) должен быть принят во внимание при любых решениях, связанных с поступлением соответствующих загрязнений в природную среду. Следует учитывать, что скорость изменения концентрации может увеличиваться или уменьшаться под действием некоторых факторов. Так, человек получит меньше ДДТ, чем птица, питающаяся рыбой. Это частично объясняется удалением пестицидов при обработке и варке рыбы. Кроме того, рыба находится в более опасном положении, ибо получает ДДТ не только через пищу, но и непосредственно из воды.

5.2. Видовая структура биоценозов

Видовая структура – это количество видов, образующих биоценоз, и соотношение их численностей. Точные сведения о числе видов, входящих в тот или иной биоценоз, получить чрезвычайно трудно из-за микроорганизмов, практически не поддающихся учету.

Видовой состав и насыщенность биоценоза зависят от условий среды. На Земле существуют как резко обедненные сообщества полярных пустынь, так и богатейшие сообщества тропических лесов, коралловых рифов и т. п. Самыми богатыми по видовому разнообразию являются биоценозы влажных тропических лесов, в которых одних растений фитоценоза насчитываются сотни видов.

Виды, преобладающие по численности, массе и развитию, называют доминантными (от лат. dominantis – господствующий). Однако среди них выделяют эдификаторы (от лат. edifikator – строитель) – виды, которые своей жизнедеятельностью в наибольшей степени формируют среду обитания, предопределяя существование других организмов. Именно они порождают спектр разнообразия в биоценозе. Так, в еловом лесу доминирует ель, в смешанном – ель, береза и осина, в степи – ковыль и типчак. При этом ель в еловом лесу наряду с доминантностью обладает сильными эдификаторными свойствами, выражающимися в способности затенять почву, создавать кислую среду своими корнями и образовывать специфические подзолистые почвы. Вследствие этого под пологом ели могут жить только тенелюбивые растения. Одновременно с этим в нижнем ярусе елового леса доминантой может быть, например, черника, но эдификатором она не является.

Предворяя обсуждение видовой структуры биоценоза, следует обратить внимание на принцип Л. Г. Раменского (1924) – Г. А. Глизона (1926) или принцип континуума:[28]

широкое перекрытие экологических амплитуд и рассредоточенность центров распределения популяций вдоль градиента среды приводят к плавному переходу одного сообщества в другое, поэтому, как правило, не образуют строго фиксированные сообщества.

Принципу континуума Н. Ф. Реймерс противопоставляет принцип биоценотической прерывности:

виды формируют экологически определенные системные совокупности – сообщества и биоценозы, отличающиеся от соседних, хотя и сравнительно постепенно в них переходящие.

Источник: iknigi.net

Поддержание определенной плотности получило название гомеостаза популяций. В основе способностей популяций к гомеостазу лежат изменения физиологических особенностей, роста, поведения каждой особи в ответ на увеличение или уменьшение числа членов популяции, к которой она принадлежит.

Механизмы популяционного гомеостаза зависят от экологической специфики вида, его подвижности, степени воздействия хищников и паразитов и др. У одних видов они могут проявляться в жесткой форме, приводя к гибели избытка особей, у других – в смягченной, например в понижении плодовитости на основе условных рефлексов.

Рис. 129. Самоизреживание в древесных насаждениях (по Г. Ф. Морозову, 1928):

слева – господствующие и угнетенные деревья в ельнике; справа – ход изреживания стволов с возрастом у сосны (1), березы (2) и ели (3)

К жестким формам внутривидовой конкуренции следует отнести, например, явление самоизреживания у растений (рис. 129). При большой густоте всходов часть растений неминуемо погибает в результате угнетения физиологически более сильными соседями. Уменьшение числа растений происходит, даже если высеянные семена генетически однородны. В этом случае, по-видимому, имеют значение разница в размерах семян, во времени появления всходов, детали микроокружения. В одном из опытов с клевером Trifolium subterraneum через 84 дня после появления всходов на участке в 1 м2 из 1250 растений осталось 650, причем влияние вредителей было исключено.

У райграса многолетнего основной экологической единицей становится не особь, а побег. Обнаружено, что при разных нормах высева семян, от 6 до 180 кг/га, сначала густота побегов варьирует от 30 до 1070 на 100 см2, но затем во всех случаях становится равной примерно 500, т. е. в более редких посевах появляются новые побеги, а в более густых часть отмирает.

Регуляция плотности популяции у растений ввиду особенностей их роста происходит обычно не только путем изменения численности особей на единице площади, но и путем изменения вегетативной мощности каждого. В загущенных посевах растения менее облиственны, с меньшим количеством побегов. Общая их масса при увеличении плотности посевов сначала возрастает пропорционально количеству высеянных семян, а затем остается на постоянном уровне, тогда как средняя масса отдельных особей соответственно уменьшается. В данном случае стабилизируется не число особей в популяции, а общая листовая фотосинтезирующая поверхность растений.

У животных жесткие формы регуляции плотности популяций проявляются обычно лишь в тех случаях, когда запасы пищи, воды или других ресурсов резко ограничены, а животные либо не способны в данный период к поискам ресурсов на другой территории, либо эти поиски неэффективны. Например, в небольших пресноводных водоемах, где нет других видов рыб, популяции окуня могут поддерживать свое существование и регулировать плотность за счет питания взрослых собственной молодью. Мальки же растут за счет мелкого планктона, к питанию которым крупные окуни не приспособлены. Каннибализм – не частое явление в популяциях животных.

Особый интерес представляют некоторые, сравнительно редкие виды, у которых способность к умерщвлению конкурентов внутри популяции закрепляется эволюционно в их поведении и даже морфологии. Подобные примеры встречаются среди насекомых.

Для паразитоидных перепончатокрылых, откладывающих свои яйца в яйца или личинки других насекомых, запас пищи в хозяине весьма ограничен и дает возможность развиться чаще всего лишь одной особи паразита. У ряда видов личинки первого возраста имеют челюсти, ненужные при питании содержимым яйца, но приспособленные для схваток с конкурентами. Нападение личинок друг на друга обычно происходит до того, как они начинают кормиться. После уничтожения конкурента личинка линяет и ее острые челюсти сменяются мягкими и бугорковидными (рис. 130). У тех видов, самки которых способны распознать уже зараженных хозяев и не откладывать яйца в них повторно, личинкам не приходится конкурировать между собой, и они лишены острых челюстей.

Рис. 130. Личинки паразитоидных перепончатокрылых:

1– Opius fletcheri; 2 – Galesus sylvestrii (a – первый возраст, б – второй возраст)

Групповые паразиты, откладывающие по нескольку яиц в одно насекомое, нередко обладают способностью соразмерять число яиц с величиной жертвы. Однако при недостатке хозяев возможно перезаражение обнаруженных паразитами, при этом обеспеченность потомства кормом снижается. В таких случаях наблюдается уменьшение размеров личинок. Вышедшие из них имаго откладывают вдвое-втрое меньше яиц при сокращенных сроках жизни. Например, у самых мелких наездников-браконид происходит полная редукция яичников.

Плотность популяции у паразитических перепончатокрылых может регулироваться также через изменения в соотношении полов, что влияет на численность следующего поколения. У многих видов сильно различается смертность самцов и самок при перенаселении. Например, у некоторых браконид доля самок составляет около 70 % при слабом заражении насекомых-хозяев и падает ниже 10 % – при сильном. Кроме того, соотношение полов регулируется поведением самок. Для многих видов наездников установлено, что в мелких хозяевах, представляющих малый запас корма, самки откладывают преимущественно неоплодотворенные яйца, из которых у перепончатокрылых развиваются самцы. При учащении контактов самок друг с другом или при восприятии следовых запахов, оставляемых другими самками, среди откладываемых яиц также увеличивается доля неоплодотворенных.

Среди механизмов, задерживающих рост популяций, у многих видов большую роль играют химические взаимодействия особей. Так, вода аквариума, в котором содержались дафнии, способна задерживать рост представителей того же вида и сохраняет эту способность в течение нескольких дней. Головастики выделяют в воду частицы белковой природы, которые задерживают рост других головастиков. Чем крупнее особь, тем сильнее она воздействует на более мелких, так как устойчивость к одной и той же концентрации ингибитора находится в прямой зависимости от размеров. Один крупный головастик Rana pipiens может задержать рост всех других в 75-литровом аквариуме. Поколение, вышедшее в близкие сроки из икры, отложенной в одном водоеме, вскоре разделяется на две размерные группы: более крупные, продолжающие расти головастики и мелкие, затормозившие свой рост из-за неблагоприятной для них концентрации метаболита. Экологическая выгода такого разделения популяции в том, что особи с наследственно более быстрым темпом роста, используя в полной мере кормовые ресурсы водоема, получают возможность быстро завершить метаморфоз и в популяцию вливается полноценное пополнение. Оставшиеся мелкие головастики, после того как первая партия покинет водоем и в нем снизится концентрация ингибитора, также имеют шансы увеличиться в размерах и достичь стадии метаморфоза, но значительно позже. Эту вторую часть пополнения можно рассматривать как своего рода резерв, который вливается в популяцию лишь при достаточно благоприятных условиях (если не пересохнет временный водоем, если в нем продолжится воспроизводство водорослей – основной пищи головастиков и т. п.).

Выделение в окружающую среду продуктов, задерживающих рост, обнаружено у многих растений и водных животных, особенно у рыб.

Другой механизм ограничения численности популяций – такие изменения физиологии и поведения при увеличении плотности, которые в конечном счете приводят к проявлению инстинктов массовой миграции. В результате происходит выселение большей части популяции за пределы территории, занимаемой в оседлый период. Особенно ярко это проявляется у насекомых, которым свойственна фазовость – резкое изменение морфологии и физиологии особей в зависимости от плотности популяции (рис. 131). У перелетной саранчи-шистоцерки в постоянных очагах ее обитания в Индии, Пакистане, Восточной Африке и Аравии при низкой численности личинки одиночной фазы имеют ярко-зеленую, а взрослые – серовато-зеленую или бурую окраску. В годы массового размножения, которое наступает при благоприятном сочетании погодных условий, саранча переходит в стадную фазу. Личинки приобретают ярко-желтую, с черными пятнами окраску, взрослая неполовозрелая шистоцерка интенсивно розово-лиловая, половозрелая – лимонно-желтая. Изменяется и морфология особей: удлиняются надкрылья, меняются формы переднеспинки, киля, пропорции конечностей и т. п. Переход из одной фазы в другую занимает около трех поколений. Процесс стимулируется зрительным восприятием особой своего вида и контактами при помощи усиков. Это вызывает в организме насекомых целую серию реакций, приводящих к гормональным перестройкам, в которых участвуют эндокринные железы.

Рис. 131. Нимфы V возраста саранчи-шистоцерки (по Н. С. Щербиновскому, 1952): слева – стадная форма; справа – одиночная форма

Стадная фаза отличается повышенной возбудимостью и чрезвычайной прожорливостью. Плодовитость самок снижается, но они откладывают яйца с большим содержанием питательных веществ. Стадная саранча все время находится в состоянии миграционной активности. Личинки двигаются скоплениями – кулигами, а взрослые гигантскими стаями разлетаются на сотни и тысячи километров от мест постоянного обитания (рис. 132). Так, в конце прошлого столетия масса одной из стай шистоцерки, перелетевшей через Красное море, была определена не менее чем в 44 млн т.

На границах своего временного ареала перелетная саранча не может размножаться, и эти очаги вскоре затухают. Стаи или погибают, или, постепенно разреживаясь, начинают откочевку к зоне постоянных очагов. В изреженных популяциях вновь происходит переход к одиночной фазе, через 2–3 промежуточных поколения. Таким образом, разлет стай саранчи не обеспечивает формирования новых постоянных популяций, а практически служит лишь механизмом снятия перенаселенности в местах, благоприятных для размножения. При этом гибнет гигантское количество насекомых. Стаи, несущие на своем пути неисчислимые бедствия, сами оказываются обреченными.

Рис. 132. Нашествие перелетной саранчи

Явление фазовости обнаружено не только у стадных саранчовых, но и у других беспозвоночных. У тлей увеличение плотности населения вызывает появление крылатой фазы и разлет насекомых с образованием новых поселений. Обычно тли дают несколько поколений бескрылых самок, но в условиях постоянного перенаселения крылатые самки развиваются в каждом поколении. У ряда амеб химические изменения состава водной среды, вызванные переуплотнением популяции, стимулируют переход в подвижную жгутиковую стадию. В результате происходит быстрое рассредоточение особей в пространстве.

Территориальное поведение животных, выработавшееся в ходе эволюции как система инстинктов, – наиболее эффективный механизм сдерживания роста численности популяции на данной площади. Мечение и охрана участков, не допускающие размножения на них «чужих» особей, приводят к рациональному использованию территории. Избыточная часть популяции при этом не размножается или вынуждена выселяться за пределы занятого пространства. Это же относится и к выведенному потомству, среди которого лишь некоторая часть вследствие естественной смертности взрослых занимает освобождающиеся участки.

Выселения как ответная реакция на растущую плотность популяции свойственны многим видам птиц и млекопитающих. Кроме обычной расселительной дисперсии молодняка, для ряда видов с резкими колебаниями численности характерны массовые перемещения – нашествия. Они возникают нерегулярно, лишь в годы вспышек размножения, и не имеют постоянного направления. Такие нашествия описаны, например, у тундровых леммингов, белок Сибири и Северной Америки и др. При нашествиях часть особей остается на месте, а среди эмигрантов преобладают молодые.

Повышение плотности популяции может сопровождаться такими изменениями в физиологии особей, которые ведут к снижению рождаемости и увеличению смертности. У млекопитающих известно явление стресса, которое впервые было описано в 1936 г. физиологом Г. Селье для человека. В ответ на отрицательное воздействие каких-либо факторов в организме возникают реакции двух типов: 1) специфические, зависящие от природы повреждающего агента (например, усиление теплопродукции при действии холода), и 2) неспецифическая реакция напряжения как общее усилие организма приспособиться к изменившимся условиям. Эта общая реакция складывается из ряда физиологических и морфологических изменений, которые постепенно развертываются как единый процесс. Реакция напряжения, или стресс, возникает в ответ на любые отрицательные воздействия среды, в том числе и на отклонение плотности популяции от оптимума.

Большую роль в развитии стресса играют сигналы коры головного мозга, меняющие активность гипоталамуса – центрального звена вегетативной нервной системы. В свою очередь, деятельность гипоталамуса вызывает изменения в функционировании гипофизарно-надпочечниковой гормональной системы. В состоянии стресса у животных сильно увеличивается кора надпочечников и повышается концентрация кортикостероидных гормонов, выделяемых этим органом, а также происходит целый ряд других изменений в гормональном равновесии организма. У самок в популяции учащаются нарушения овуляции, резорбция эмбрионов, рано прекращается лактация, угасают инстинкты заботы о потомстве и т. п., уменьшается число выводков и количество в них молодых. В конечном счете все это приводит к торможению роста популяции. У мышевидных грызунов, содержащихся в клетках одинаковых размеров, четко проявляется обратно пропорциональная зависимость между численностью зверьков в клетке и массой их репродуктивных органов. В состоянии стресса у животных даже при достаточном снабжении кормом понижается устойчивость к вредным воздействиям среды, что увеличивает смертность.

От плотности населения зависит в первую очередь поведение животных. У многих видов в условиях скученности повышается уровень агрессивности, меняется реакция на особей противоположного пола, молодняк и т. д.

Стресс-реакция как механизм, регулирующий рождаемость, особенно отчетливо проявляется у животных с хорошо выраженной системой иерархического подчинения в группах.

Реакция напряжения свойственна подчиненным животным; у них также тормозится воспроизводительная функция. Доминирующие особи стресс-реакции не проявляют. В переуплотненных популяциях стресс распространяется на большую часть особей и, по-видимому, тормозит размножение.

Стрессовое состояние не вызывает необратимых изменений в половой системе, а приводит лишь к временному гормональному блокированию ее функции. После устранения перенаселенности способность к размножению может восстановиться в короткие сроки.

Закономерности стресса, вызываемого перенаселением, изучают в основном на лабораторных животных. Однако многочисленные факты, зарегистрированные в природных популяциях, позволяют предполагать, что в естественных условиях стресс играет немалую роль в регуляции численности и структуры популяций и поведения млекопитающих (рис. 133).

Рис. 133. Зависимость интенсивности размножения от плотности населения в популяции малого суслика (по М. Р. Магомедову, 1995)

Рис. 134. Динамика численности сибирского лемминга на Аляске (по Bunnel et all., 1975)

Например, в динамике популяций ряда тундровых леммингов зарегистрированы правильные циклы трех-четырехлетней периодичности с амплитудой колебания до 600 крат (рис. 134). Фаза пика в таких колебаниях ограничена обычно одним сезоном, затем следуют резкий спад, фаза депрессии численности и последующего нарастания. При нарастании численности регистрируется увеличение плодовитости, повышение скорости созревания молодняка, усложнение возрастной структуры популяции, снижение смертности новорожденных. В период пика отмечается резкое снижение воспроизводства и одновременно увеличивается смертность во всех возрастных группах. В яичниках самок всех возрастов обнаруживаются серьезные деструктивные изменения, наблюдается массовая гибель фолликулов на ранних стадиях развития. Год-два после спада численности общая интенсивность размножения остается средней, а смертность высокой, а затем вновь все показатели размножаемости начинают расти. У зверьков, родившихся при низкой численности популяции, восстанавливается нормальное функционирование яичников.

На разных этапах этого цикла сильно меняется гормональное состояние зверьков, относящихся к разным генерациям. В пик численности отмечается избыточная активность адреналовой и щитовидной желез, что резко тормозит воспроизводительные функции организма. В ходе цикла у сменяющихся поколений меняется не только функционирование отдельных желез, но и всей эндокринной системы животных. Через несколько поколений, в период минимума численности, состояние эндокринной системы нормализуется и обеспечивает восстановление эффективности процесса размножения. Конкретные причины таких гормональных различий у разных поколений связаны с тем, что жизнеспособность и эндокринные особенности организма формируются в эмбриональный период и во многом определяются физиологическим состоянием родителей.

Таким образом, динамику численности леммингов можно представить как авторегулируемый процесс, в котором большую роль играют эндокринные механизмы.

Все рассмотренные выше примеры взаимодействия между членами популяции, от «жестких» форм – прямого уничтожения одной особью другой – до снижения воспроизводительных способностей как условного рефлекса на повышение частоты контактов, представляют собой разные формы ограничения роста популяций. Эти тормозящие механизмы включаются до полного истощения ресурсов среды в ответ на сигналы, свидетельствующие об угрозе перенаселения.

Степень развития механизмов популяционного гомеостаза находится также в тесной связи с тем, насколько влияют на популяцию другие виды: конкуренты, хищники, паразиты. Общая регуляция численности популяций в природных сообществах происходит в результате сложных межвидовых и внутривидовых взаимоотношений.

Следующая глава >

Источник: bio.wikireading.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.