Экосистема фото


Экосистема тропического леса

Экосистема фото

Тропические леса опоясывают нашу планету по экватору и захватывают субтропическую, тропическую и экваториальную климатические зоны. При этом огромную роль играет влажность воздуха. Во влажном климате тропические леса вечнозеленые, в сухом (вдали от океанов и морей) леса зеленые только в теплое время года.

Экосистема тропического леса самая богатая из всех лесных ЭС по видовому разнообразию. Доминируют здесь пальмы, миртовые, бобовые, в сухих тропиках — бамбук, лавр, альбиции.

Одна из особенностей экосистемы тропического леса: смазанность границ ярусов. Так, травы могут вырастать до 6 м в высоту, забираясь на средний ярус. Папоротники вообще могут занимать сразу все три яруса. Добавляет размытости и обилие лиан, эпифитов, которые плотной сетью окутывают все растения.

Еще одна особенность экосистемы тропического леса в том, что большинство видов потребителей обитают сразу на деревьях. Это и многочисленные животные (обезьяны, ленивцы, белки-летяги), птицы (попугаи, колибри, дятлы, туканы), пресмыкающиеся (змеи, ящерицы, гекконы, хамелеоны). Даже лягушки — и те стремятся забраться повыше. Сухопутных животных в этой экосистеме мало, зато все они очень крупные: слоны, жирафы, носороги, бегемоты, буйволы.

Редуцентами являются, в основном, грибы и термиты.

Сложные системы


Экосистемы обширны и сложны. Они включают цепи животных — от крупнейших млекопитающих до самых маленьких насекомых — наряду с растениями, грибами и различными микроорганизмами. Все эти формы жизни взаимодействуют и влияют друг на друга. Медведи и птицы едят рыбу, землеройки едят насекомых, а гусеницы едят листья. Все в природе пребывает в тонком балансе. Но ученым нравятся технические термины, поэтому этот баланс организмов в экосистеме часто упоминается как гомеостаз (саморегуляция) экосистемы.

В реальном мире сообществ ничто идеально сбалансированным быть не может. Таким образом, когда экосистема находится в равновесии, это значит, что она в относительно стабильном состоянии: популяции различных животных остаются в одинаковом диапазоне, их численность может увеличиваться и уменьшаться на определенном этапе, но нет общей тенденции «вверх» или «вниз».

Экосистема фото

Структура, компоненты и факторы экосистемы


Экосистема определяется как природная функциональная экологическая единица, состоящая из живых организмов (биоценоза) и их неживой окружающей среды (абиотической или физико-химической), которые взаимодействуют между собой и создают стабильную систему. Пруд, озеро, пустыня, пастбища, луга, леса и т.д. являются распространенными примерами экосистем.

Каждая экосистема состоит из абиотических и биотических компонентов:

Экосистема фотоСтруктура экосистемы

Абиотические компоненты

Абиотические компоненты представляют собой не связанные между собой факторы жизни или физическую среду, которая оказывает влияние на структуру, распределение, поведение и взаимодействие живых организмов.

Абиотические компоненты представлены в основном двумя типами:

  • Климатическими факторами, которые включают в себя дождь, температуру, свет, ветер, влажность и т.д.
  • Эдафическими факторами, включающие в себя кислотность почвы, рельеф, минерализацию и т.д.

Значение абиотических компонентов

Почвы содержат минеральные и органические вещества, а также живые организмы. Почва обеспечивает живых существ питательными веществами, влагой и средой обитания. Растительность верхней части почвенного покрова тесно с ней связана через круговорот питательных веществ.

Атмосфера обеспечивает живые организмы углекислым газом (для фотосинтеза) и кислородом (для дыхания). Процессы испарения, транспирации и круговорота воды происходят между атмосферой и поверхностью Земли.


Солнечное излучение нагревает атмосферу и испаряет воду. Свет также необходим для фотосинтеза. Фотосинтез обеспечивает растения энергией, для роста и обмена веществ, а также органическими продуктами для питания других форм жизни.

Большинство живой ткани состоит из высокого процента воды, до 90% и даже более. Немногие клетки способны выжить, если содержание воды падает ниже 10%, и большинство из них погибают, когда вода составляет менее 30-50%.

Вода является средой, с помощью которой минеральные пищевые продукты поступают в растения. Она также необходима для фотосинтеза. Растения и животные получают воду с поверхности Земли и почвы. Основной источник воды — атмосферные осадки.

Биотические компоненты

Живые существа, включая растения, животных и микроорганизмы (бактерии и грибы), присутствующие в экосистеме, являются биотическими компонентами.

На основе их роли в экологической системе, биотические компоненты могут быть разделены на три основные группы:

  • Продуценты производят органические вещества из неорганических, используя солнечную энергию;
  • Консументы питаются готовыми органическими веществами, произведенными продуцентами (травоядные, хищники и всеядные);
  • Редуценты. Бактерии и грибы, разрушающие отмершие органические соединения продуцентов (растений) и консументов (животных) для питания, и выбрасывающие в окружающую среду простые вещества (неорганические и органические), образующихся в качестве побочных продуктов их метаболизма.

Эти простые вещества повторно производятся в результате циклического обмена веществ между биотическим сообществом и абиотической средой экосистемы.

Определение и концепция понятия

Экологическая система — это совокупность живых организмов, их естественных условий обитания и систем связей, с помощью которых осуществляется обмен энергией, веществами и информацией. Понятие «экосистема» было предложено учёным-ботаником А. Тенсли в 1935 году, который посвятил всю свою жизнь изучению процессов ботаники.

Экологическая система выступает отдельной структурной единицей, объединяющей биотические и абиотические факторы. Она характеризуется своей линией саморазвития, определённой организацией и способностью обеспечивать жизненно важные материалы. Понятие экосистемы появилось только в XX веке, но с тех времён её схема значительно усложнилась и продолжает изменяться. На неё влияют естественные причины и вмешательство прогрессивных аспектов.

Природные сообщества не имеют чётких границ. Они разделены такими географическими барьерами, как горы, пустыни, реки, моря или океаны, поэтому они обычно сливаются друг с другом. Переходные зоны между ними называются экотонами.

Экосистему часто называют биогеоценозом, однако учёные считают, что второе понятие нельзя считать полным синонимом этого термина. Биогеоценоз — это аналог экологической системы на начальном уровне, связанный с конкретным участком наземной или водной среды. Экосистема рассматривает абстрактные участки.


В мире существует много различных природных комплексов, но их всех объединяет один и тот же принцип: в любой системе присутствует региональный компонент, называемый биотопом и характеризующийся одинаковым ландшафтом и климатом, а также биоценоз, представленный обитателями группы, постоянно проживающими в биотопе. Вместе они образуют биогеоценоз и не могут существовать отдельно друг от друга.

Примеры искусственных и естественных экосистем

Водные биогеоценозы представлены океанами, морями, реками, озёрами. Человеком создаются водохранилища, городские пруды (декорация и место отдыха), котлованы (место водопоя скота).

Аквариум – простейшая искусственная среда, где образующим фактором является вода. Водоросли служат фотосинтезирующим элементом, рыбы или улитки поглощают созданный водорослями кислород, микроорганизмы разлагают органические остатки. Даже в присутствии всех необходимых частей жизнь аквариума невозможна без своевременной фильтрации, добавления синтетического корма.


Примеры наземно-воздушных естественных экосистем – луга, леса, степи, пустыни, тундра. Распространённые агроценозы – поля, где средообразующими видами выступают злаки, бобовые, подсолнечники. Продуктивность полей поддерживают, обрабатывая их тракторами, комбайнами. Сады создают для сбора фруктов, ягод и разведения декоративных растений; огороды устраивают для получения овощного урожая.

Пастбища – регулируемые человеком луга, предназначенные для выпаса рогатого скота, лошадей, а также сенокошения. Парки для активного отдыха на свежем воздухе часто обустраивают на месте природных лесов. Для создания пешеходных дорожек часть деревьев вырубают, некоторые виды специально высаживают рощами.

Теплицы и оранжереи используют для выращивания теплолюбивых растений на дачных участках либо экзотических видов в ботанических садах. Экосистемы могут быть совсем небольшими, как сад Дэвида Латимера в закупоренной стеклянной бутылке.

Ульи – те же антропогенные экосистемы. Поддержание продуктивности живых организмов требует усилий, что доказывает работа пасечников, которые:

  • весной пересаживают пчёл;
  • летом помогают пчёлам роиться;
  • чистят ульи каждый летний месяц;
  • следят за качеством мёда;
  • осенью меняют пчелиных маток;
  • зимой держат пчёл в темноте, регулируют температуру.

vote

Article Rating

Трофические уровни. Цепи и сети питания, их звенья


Трофический (пищевой) уровень — комплекс организмов с одинаковым типом питания, занимающих определенное положение в пищевой цепи.

Пищевая цепь — последовательность живых организмов, способных передавать питательные вещества и энергию от продуцентов (растений) к консументам (хищникам). Соседние звенья пищевой цепи формируют отношения по принципу «пища — потребитель». То есть, если одна группа организмов становится пищей для другой группы, звенья будут сцеплены.

 Классификация трофических уровней:

  1. первый — образуют продуценты (фотосинтезирующие растения);
  2. второй — консументы I порядка (травоядные животные: овцы, зайцы, насекомые);
  3. третий — консументы II порядка (первичные хищники, для которых пищей служат травоядные животные: змея, поедающая грызунов, или волк, питающийся кроликом);
  4. четвертый — консументы III порядка (хищники, питающиеся консументами II порядка, или вторичные хищники: сова, поедающая змей).

Особи одного вида могут занимать несколько трофических уровней в зависимости от источников пищи (например, белый медведь, потребляя ягоды, считается консументом I порядка, но, поедая грызуна, становится консументом II порядка).

Вершину пищевой цепи обычно занимают высшие хищники, которые, как правило, не имеют серьезных врагов (например, крокодил или акула). 

Заключенная в одних организмах энергия потребляется другими организмами в процессе круговорота веществ. Перенос энергии и пищи от ее источника — автотрофов (продуцентов) через ряд организмов происходит по пищевой цепи, путем поедания одних организмов другими. Пищевая цепь — это ряд видов или их групп, каждое предыдущее звено в котором служит пищей для следующего. Число звеньев в ней может быть различным, но обычно их бывает 3 — 5. 

Пищевые цепи подразделяются на:

  • пастбищные;
  • детритные.

Пастбищные пищевые цепи – это цепи выедания. Основным источником пищи здесь являются зеленые растения (продуценты).

Например, трава (автотроф) → заяц → лиса. Такие пищевые цепи находятся в непосредственной зависимости от солнечной энергии. Круговорот веществ и энергии в природе определяется пастбищными пищевыми цепями. 

Детритные пищевые цепи – это цепи разложения, где в качестве главного источника пищи используются отмершие останки. Органические останки, или детрит, формируют начало детритных пищевых цепей.

Например, листовой опад (детрит) → дождевой червь → дрозд → ястреб-перепелятник. Этот тип пищевой цепи меньше зависит от энергии Солнца. Главный фактор существования данной цепи — приток органических веществ из другой системы. Детритные пищевые цепи осуществляют накопление веществ и энергии в экосистеме.

Значение пищевой цепи:

  1.  изучение пищевых цепей позволяет проследить кормовые взаимодействия между разными организмами в экосистеме;
  2. знания о пищевых цепях дают возможность оценить механизм движения энергии и проследить перемещение веществ в экосистеме.

Пищевые цепи не изолированы друг от друга. Они взаимодействуют между собой, формируя пищевые сети. Пищевая сеть– это условное образное обозначение трофических взаимоотношений продуцентов, консументов и редуцентов в сообществе. Оценивая схемы пищевых цепей, можно отметить, что каждый организм питается только каким-то определенным организмом. На самом деле, это не всегда так. Как правило, живые организмы могут использовать в качестве источника пищи организмы из разных популяций. Даже организмы из смежных пищевых цепей могут выступать для них компонентом питания. Таким образом, возможно переплетение пищевых цепей с образованием пищевых сетей.

Экосистема смешанного леса

Экосистема фото

Смешанные леса представляют собой симбиоз экосистем хвойных и лиственных лесов. Они дополняют друг друга, укрепляют, поэтому такая экосистема считается наиболее устойчивой из всех лесных.

Смешанными леса считаются, если к основному виду деревьев добавляются другие породы, но в численном коэффициенте — не более 5%. Поэтому такие леса располагаются между хвойными на севере и широколиственными на юге — в полосе, где расположены территории юга Скандинавии, Восточно-Европейской и Западно-Сибирской равнин, Карпат, Кавказа, Дальнего Востока и Юго-Восточной Азии. На американском континенте это территория Великих озер и Калифорнии. В южном полушарии экосистема смешанных лесов располагается в большей части Южной Америки и в Новой Зеландии.


Доминантами в этой экосистеме являются такие деревья как дуб, клен, ель, сосна, липа, вяз. В Америке — секвойя, в горах — лиственница, на Кавказе и дальнем Востоке — бук и пихта.

Потребителями, или консументами в экосистеме смешанных лесов являются животные, птицы, рыбы, земноводные, насекомые, грибы. Замыкают пищевую цепочку могильщики: черви, личинки, микроорганизмы.

Главная особенность экосистемы смешанного леса — устойчивость, которая обуславливается способностью полного заменения вида. То есть, если популяция какого-либо вида исчезнет, ее место спокойно замещается возросшим количеством особей другого вида.

Уязвимое место такой экосистемы — насекомые. Если они исчезнут, то экосистема смешанного леса станет затухать и погибнет.

Биогеоценоз в лесу

Прежде чем привести примеры лесного биогеоценоза, вернемся еще раз к понятию экосистемы. В лесу наблюдается обилие флоры, поэтому его населяет большое количество организмов, существующих в рамках относительно небольшого пространства. Плотность живых организмов здесь довольно высока. Чтобы убедиться в этом, следует рассмотреть хотя бы несколько примеров лесных биогеоценозов:

  • Тропический вечнозеленый лес. Получает внушительное количество осадков в год. Основной характеристикой является наличие густой растительности, которая включает высокие деревья на разных уровнях, каждый из которых является убежищем для разных видов животных.
  • Тропический лиственный лес составляют кустарники и плотные кусты наряду с широким разнообразием деревьев. Этот тип характеризуется большим разнообразием фауны и флоры.
  • Умеренный вечнозеленый лес — здесь довольно много деревьев, а также мхов и папоротников.
  • Умеренный лиственный лес расположен во влажных умеренных широтах с достаточным количеством осадков. Лето и зима четко определены, а деревья теряют листья в осенние и зимние месяцы.
  • Тайга, расположенная непосредственно перед арктическими регионами, характеризуется вечнозелеными хвойными деревьями. Температура низкая (ниже нуля) в течение полугода, и жизнь в это время здесь будто замирает. В остальные периоды в тайге полно перелетных птиц и насекомых.

Экосистема широколиственного леса

Экосистема фото

Широколиственные леса распространены на большей части Европы и Восточной Азии, в Северной Америке и к югу от Чили.

Доминирующую роль играют листопадные деревья — те, которые сбрасывают листву с наступлением холодов. Это липы, дубы, ясени, вязы, клены, каштаны. На среднем ярусе растут черемуха, берескеты. Нижний полностью занимают травы и ягоды: пролесник, медуница, земляника и пр.

Класс потребителей в этой экосистеме представлен млекопитающими (лисы, волки, тигры, медведи, ежи, еноты, кабаны, зайцы, белки), птицами (соловьи, снегири, чижи, глухари, кукушки, аисты), рептилиями, амфибиями и рыбами.

Редуцентами являются все те же могильщики, черви и микроорганизмы.

Экосистема широколиственного леса весьма устойчива. Уязвимой она становится во время холодов, когда деревья сбрасывают листву и процесс фотосинтеза замирает. В этот период особая роль отводится редуцентам, которые преобразуют органику в неорганические вещества.

14.7.Общая характеристика биоценоза и биогеоценоза (экосистемы)

Биоценоз. В природе популяции разных видов объединяются
в системы более высокого ранга — сообщества, или биоценозы.

Биоценоз (греч. bios — жизнь, koinos — общий) —
исторически сложившаяся устойчивая совокупность популяций
растений, животных, грибов и микроорганизмов, приспособленных
к совместному обитанию на однородном участке территории или
акватории.
Термин «биоценоз» предложил немецкий зоолог
К.Мебиус в 1877г.

Приспособленность членов биоценоза к совместной жизни
выражается в определенном сходстве их требований к важнейшим
абиотическим условиям среды (освещенность, характер увлажнения
почвы и воздуха, тепловой режим и т. д.) и в закономерных
отношениях друг с другом. Связь между организмами необходима
для осуществления их питания, размножения, расселения, защиты
и т. д. Однако в ней кроется и определенная угроза и даже
опасность для существования того или иного индивидуума.
Биотические факторы среды, с одной стороны, ослабляют
организм, с другой — составляют основу естественного отбора —
важнейшего фактора видообразования.

Масштабы биоценотических группировок организмов (биоценозов)
различны — от сообществ на стволе дерева, в норе или на
болотной кочке (их называют микросообществами) до населения
участка дубравы, соснового или елового леса, луга, озера,
болота или пруда. Принципиальной разницы между биоценозами
разных масштабов нет, поскольку мелкие сообщества являются
составной частью более крупных, для которых характерно
возрастание сложности и доли косвенных связей между видами.

Составными частями биоценоза являются фитоценоз
(устойчивое сообщество растений), зооценоз
(совокупность взаимосвязанных видов животных),
микоценоз(сообщество грибов) и микробоценоз (сообщество
микроорганизмов).

Понятия «экотоп» и «биотоп». Участок земной поверхности
(суши или водоема) с однородными условиями обитания,
занимаемый тем или иным биоценозом, называется биотопом
(греч. bios — жизнь, topos — место).

Климатоп (комплекс климатических факторов) и
эдафотоп (почвенно-грунтовые условия) в совокупности
составляют экотоп. Различия между этими понятиями в
том, что биотоп — это условия среды, видоизмененные живыми
организмами, а экотоп — первичный комплекс факторов
физико-геогафической среды без участия живых существ.

В пространственном отношении биотоп соответствует биоценозу.
Границы биоценоза устанавливают по фитоценозу, имеющему легко
распознаваемые черты. Например, сосновые леса легко отличимы
от еловых, верховое болото — от низинного и т. д. Кроме того,
фитоценоз является главным структурным компонентом любого
биоценоза, поскольку определяет видовой состав зоо-, мико- и
микробоценозов.

Биогеоценоз и экосистема. Сообщества организмов тесно
связаны не только друг с другом, но и с абиотической средой.
Растения могут существовать только при наличии света,
углекислого газа, воды, минеральных солей. Животные и другие
гетеротрофные организмы (грибы, большинство бактерий) живут за
счет автотрофов, но нуждаются в поступлении таких
неорганических соединений, как кислород и вода. В любом
биотопе запасы неорганических соединений, необходимых для
поддержания жизнедеятельности населяющих его организмов,
сравнительно малы и постоянно убывают, поэтому необходимо их
возобновление. Из окружающей среды живые организмы поглощают
биогенные элементы и энергию и возвращают их обратно
(например, при дыхании, выделении экскрементов, разложении
растительных и животных остатков). Благодаря этим обменным
процессам биоценоз и окружающая его неорганическая среда
(экотоп) представляют собой сложную систему, получившую
название экосистема или биогеоценоз.

Термин «экосистема» был предложен в 1935 г. английским
экологом А. Тенсли, который подчеркивал, что в природе
органические (биотические) и неорганические (абиотические)
факторы выступают как равноправные компоненты и не следует
отделять организмы от окружающей их среды.

Таким образом, биогеоценозэто однородный участок
земной поверхности с определенным составом живых организмов
(биоценоз) и определенными условиями среды обитания (биотоп),
которые объединены обменом веществ и энергии в единый
природный
комплекс (рис. 14.3). Во многих странах мира
такие природные комплексы называют экологическими системами
(экосистемами).

Рис. 14.3. Биоценоз в экосистеме.

Искусственные экосистемы: поле, сад. Уход за ними

Растения, которые человек специально выращивает для получения из них определенных продуктов, называют культурными.

Обработанные участки земли, засеянные культурными растениями, называются полями. Поле — это искусственная экосистема. На полях выращивают зерновые культуры (пшеница, рожь, кукуруза, гречка и другие), а также овощи (картофель, огурцы, морковь, свекла, помидоры и т.д.).

Все культурные растения являются результатом кропотливого труда многих людей. Ведь именно ученые вывели тысячи сортов культурных растений. Сорт — это созданная человеком совокупность определенных растений, которые имеют необходимые для человека признаки.

На поле растут также растения, которые человек специально не выращивает, но они появляются среди посевов культурных растений. Такие растения называются сорняками. Распространенными сорняками полей является березка, осот, пырей, щирица.

Кроме сорняков, растениям наносят вред некоторые животные. Например, насекомые и клещи. Они питаются растениями и тем самым снижают урожайность.

Для получения высоких урожаев человек должен ухаживать за полем: своевременно проводить обработку почвы, уничтожать сорняки, бороться с вредителями культурных растений, вносить удобрения. Существование экосистемы поля зависит от хозяйственной деятельности человека.

Также чрезвычайно распространенной искусственной экосистемой является сад. Сад — это посадка деревьев и кустарников, которые обеспечивают человека съедобными плодами. Самыми распространенными растениями сада является яблони, вишни, груши, сливы. Рядом с деревьями можно встретить ягодные кусты: смородину, малину, крыжовник и др.

В саду много насекомых и птиц. Некоторые насекомые необходимы растениям, потому что они опыляют цветки, чем способствуют повышению урожайности сада. Но большинство насекомых — вредители, которые повреждают различные части растений. Например, листовертки повреждают плоды, листья, почки деревьев и кустарников, плодожорки — плоды и побеги, щитовки — плоды и кору деревьев, жуки — корни и листья. Птицы, которые живут в саду, приносят пользу, уничтожая большое количество насекомых-вредителей. Это такие привычные для нас воробьи, синички, скворцы.

Сад нуждается в постоянном уходе. С ранней весны до поздней осени проводят обрезку сухих, поврежденных и лишних веток, отбеливают стволы деревьев известковым раствором, подкармливают растения удобрениями, рыхлят почву, убирают листья, покрывают стволы деревьев, особенно молодых, защитными составами, чтобы их кору не повредили зайцы.

Итак, сад и поле — это сложные искусственные экосистемы, где налажены взаимосвязи между всеми компонентами и существуют цепи питания. Гармоничная и продуктивный жизнедеятельность экосистем поля и сада полностью зависит от человека.

Источник: dogcatdog.ru

Омниканальность

Клиент должен иметь доступ к единому набору сервисов независимо от канала взаимодействия. Задача экосистемы не только в том, чтобы предоставить пользователю единый состав сервисов в разных интерфейсах — приложении для смартфона, на сайте, в информационном терминале или офисе продаж. Необходимо внутри одного сервиса обеспечить для клиента возможность обращения к релевантным функциям других продуктов экосистемы. Поэтому под каналом взаимодействия важно понимать не столько виды интерфейсов, сколько сами сервисы и продукты экосистемы. Например, возможность оплатить заправку или включить любимый трек, не выходя из приложения-навигатора.

Поэтому оптимальным является решение, когда омниканальные сервисы предоставляет единый фронтенд с набором микросервисов, отвечающих за необходимые бизнес-сценарии. При этом компоненты экосистемы должны предоставлять API-контракты для обращения к их основным функциям.

Экосистема фото

Для НСПК банковская карта — это одновременно продукт и канал обслуживания клиента. Омниканальный подход реализуется набором клиентских сервисов, которые поставляются Платежной системой внутри данного клиентского канала. НСПК выступает платформой, связывающей держателей карты Мир с поставщиками финансовых и около-финансовых сервисов. Например, с банками-эмитентами, компаниями-партнерами программы лояльности, сторонними сервисами лояльности, государственными организациями, с собственным продуктом MirPay.

Экосистема фото

Единая учетная запись

Продукты экосистемы включают большой набор профильных функций. Например, банковское приложение содержит ряд инструментов для работы с текущими счетами, а приложение для инвестирования той же финансовой организации — другой широкий состав доступных операций. Совмещение двух функционалов в одном приложении было бы нецелесообразным с точки зрения UX/UI. При этом вынуждать клиента использовать разные логин и пароль для двух и более сервисов было бы отступлением от принципов экосистемы. Поэтому клиенты экосистемы используют единый логин и пароль.

С точки зрения архитектуры важно использовать единый для продуктов экосистемы сервис аутентификации и авторизации. Это условие выглядит очевидным в случае, когда компоненты экосистемы создаются одновременно. Но часто сама экосистема «собирается» из разрозненных самостоятельных клиентских сервисов, которые уже располагают авторизующими решениями. В этом случае возникает дилемма. C одной стороны в разных сервисах уже зарегистрированы одни и те же клиенты, которые на момент регистрации не давали согласия и не ожидали, что учетная запись в сервисе A в какой-то момент заработает в сервисе B. С другой стороны, новым клиентам должна быть доступна регистрация сразу во всех бизнес-доменах экосистемы. Оптимальный вариант — создание дополнительного глобального – универсального для всей экосистемы – способа регистрации и аутентификации, доступного клиентам наряду со стандартной регистрацией в отдельных сервисах (продуктах).

Экосистема фото

Единый ID клиента и клиентский профиль

Как уже говорилось, важнейший принцип экосистемы — максимизация знаний о клиенте. Здесь важным является взаимный обмен данными о клиентах между сервисами. Эту задачу сложно решить без уникального идентификатора клиента, единого для всех информационных систем и сервисов экосистемы. Если одна информационная система «знает» клиента по номеру паспорта, а другая по номеру телефона, то синхронизация данных возможна только с реализацией справочников соответствий идентификаторов на стороне каждой из систем. Если информационных систем много, то задача репликации клиентских данных усложняется, а нагрузка на системы возрастает кратно. Поэтому важно формировать уникальный ID клиента централизованно и в момент его регистрации в любом продукте экосистемы.

По той же причине критически важно централизованное хранение клиентского профиля. Информационные системы бизнес-доменов должны сохранять пользовательские данные в едином хранилище. При этом само хранилище предоставляет данные и для онлайн-обслуживания клиента — например, для загрузки профиля в личный кабинет, и для офлайн-аналитики. Отдельной задачей здесь стоит обеспечение оперативного обновления клиентского профиля системами-источниками.

Для платежной системы Мир единый ID клиента и клиентский профиль важен по нескольким причинам. Во-первых, контакт-центр должен иметь возможность оказать поддержку держателю карты по различным вопросам – от начисления кэшбэка до токенизации карты в мобильном кошельке MirPay. Для этого информация о клиентских событиях должна сохраняться централизованно и привязываться к единому сквозному клиентскому идентификатору. Во-вторых, в рамках программы лояльности важно уметь предвосхищать клиентские ожидания и понимать, какие категории товаров и услуг интересны клиенту. Данные задачи как раз и помогает решать единый клиентский профиль, сквозной для всех доменов ID клиента и единый аналитический CRM. Новые клиентские продукты проектируются также с учетом использования кросс-доменных глобальных сервисов – ID, профиля, учетной записи.

Экосистема фото

Единый платежный инструмент и централизованный клиентский биллинг экосистемы

Использование одного продукта экосистемы упрощает клиенту пользование другими продуктами. Это справедливо и для способа финансовых расчетов. Участник экосистемы должен иметь возможность оплатить разные сервисы с помощью одного инструмента и получать финансовую выгоду от одновременного пользования продуктами экосистемы. Легкий способ решения задачи — привязка (токенизация) банковской карты к разным сервисам. В этом случае клиент действительно будет использовать единый платежный инструмент. Но становится практически нереализуемой задача создания механик финансовой мотивации к пользованию разными продуктами экосистемы. Пользователю сложно будет начислить повышенные бонусные баллы за приобретение ряда услуг, оформить единую подписку, показывать в разных сервисах актуальный баланс и единую историю операций, отслеживать пользование услугами, проводить тарификацию в режиме реального времени. Клиент потеряет в «бесшовности» финансовых выгод, а продукты экосистемы в синергетическом эффекте. Поэтому такие задачи решаются с помощью единого клиентского счета или кошелька, которые обслуживаются в централизованной биллинговой системе. AliPay – наиболее яркий пример такого финансового экосистемного сервиса.

Экосистема фото

Как уже упоминалось, платежная система Мир — это платформа, связывающая держателей карты и поставщиков сервисов и привилегий. Клиент может приобрести тур в Сочи, оплатить парковку, купить продукты в торговой сети-партнере программы и проехать на метро по карте Мир. Платежная система должна из всего потока операций держателя карты выбрать те, по которым необходимо начислить поощрение, рассчитать его и провести саму операцию начисления. Дополнительно к этому требуется произвести взаиморасчеты с компаниями-поставщиками привилегий. Проведение этих операций в разных системах или решениях было бы крайне трудоемкой и сложно сводимой задачей. Поэтому в случае ПС Мир роль централизованного биллинга экосистемы выполняет Центральный процессинг лояльности. Он регулярно обрабатывает десятки миллионов операций и производит необходимые расчеты.

Событийная интеграция систем (Event-Driven Architecture)

Используя «перекрестное» обогащение знаниями о клиенте компании создают сложные механики анализа клиентского поведения. Они помогают предвосхищать желания и потребности клиентов и предлагать релевантную продукцию – товары, контент, услуги. На таком подходе построены концепции Next Best Offer (NBO) и Next Best Action (NBA). В рамках этих решений определяется, какой товар клиент с высокой вероятностью приобретет в конкретный момент (или период) времени. И, соответственно, какое действие клиент будет готов совершить в следующий момент. Для принятия таких решений компании анализируют в режиме real-time до тысячи триггеров клиентского поведения – состав покупок, суммы, тип ТСП, запрашиваемый контент, проставленные в соцсетях лайки, среднее время просмотра роликов, контакты и многое другое. Но главное, решение на основе такого анализа необходимо принимать «на лету», так как спустя время готовность клиента к приобретению товара или действию может сильно снизиться и предложение станет не актуальным. Поэтому для такого рода задач важна событийно-ориентированная интеграционная архитектура. Каждый домен экосистемы (как совокупность информационных систем) должен уведомлять другие домены о «событиях» в жизни клиента. Поэтому необходима организация «супермаркета операционных данных» — решения, которое позволяет информационной системе в онлайн-режиме получать важные для себя данные (например, на базе брокера сообщений Apache Kafka). Прямая интеграция систем для получения данных «по запросу» или рассылки сообщений о событиях создаст спагетти-архитектуру и, как следствие: существенный прирост нагрузки на системы, более сложное сопровождение, а также предпосылки для большего количества доработок в случае расширения атрибутного состава клиентских данных.

Экосистема фото

Такие технологические кросс-доменные сервисы могут включать экосистемные бизнес-модели. Данный список не является полным. Но перечисленные инструменты и подходы позволяют крупнейшим международным экосистемам обеспечивать множество клиентских решений, которые в совокупности создают превосходный клиентский опыт. При этом сами продукты экосистемы посредством перечисленных сервисов достигают главной цели – получают синергетический эффект от взаимного обогащения знаниями и клиентской аудиторией.

Каждый бизнес-домен экосистемы — это канал привлечения клиентской аудитории для других сервисов. И в тоже время – элемент, который препятствует выходу клиента из экосистемы.

Поэтому включение нового клиента в экосистему происходит по заранее и детально спроектированному клиентскому пути (Customer Journey). А работа с одним сервисом упрощает клиенту работу с другими сервисами.

Резюмируя, стоит также отметить, что с точки зрения ИТ продукты экосистемы связывает и множество других сервисов и подходов. Например, синхронизация разработки и релизного цикла, унификация стандартов информационной безопасности, технологического стека, пользовательских интерфейсов и клиентского опыта, единая логическая модель данных, консолидация и аналитика данных и многое другое.

Источник: habr.com

Наземные

Главным фактором при классификации наземных экосистем является тип растительного покрова, преобладающий на определённой территории. Именно по этому критерию можно составить примерный портрет о структуре и характеристиках экосистемы той или иной местности. Опираясь на принцип широтной зональности, можно выделить 9 основных типов биомов, начнём с тех, что ближе к экватору.

Вечнозеленый дождевой тропический лес

Данный биом находится в экваториальном поясе. Здесь всегда очень влажно, и температура стабильна круглый год. Именно в таких благоприятных условиях проживает почти 70% всех известных видов растений и животных Земли. Для тропических лесов характерна древесная растительность, при этом кустарники тут практически отсутствуют, а вот лианы, наоборот, произрастают в больших количествах. Из-за плотности крон высоких деревьев солнечный свет редко проникает к земле. По этой причине подлесок на нижнем ярусе не формируется. Но в тех местах, где вдруг образовались пустоты в лиственном навесе, территория под деревьями сразу покрывается труднопроходимыми зарослями небольших деревьев, кустарников и лиан.

Сезонный тропический лес

Распространен на территориях с жарким климатом и большим количеством осадков, где в течение года влажный сезон чередуется с 1 или 2 сухими. Видовое разнообразие растений этого биома беднее, чем в вечнозеленом дождевом лесу. На характер флоры здесь значительное влияние оказывает количество осадков, выпадающих в разное время года. Для самых влажных областей характерны густые вечнозеленые леса, на территориях, где бывают непродолжительные периоды засухи, произрастают листопадные переменно-влажные леса, сменяющиеся далее саванновыми лесами и колючим редколесьем.

Саванны

Области суши с преобладанием травянистой растительности. Расположены в субэкваториальном поясе, где чётко разграничены дождливый и засушливый сезоны. Растения здесь приспособлены к сухому континентальному климату и могут выживать в условиях засухи, продолжающейся до нескольких месяцев. Помимо злаков и прочих трав в данном биоме распространены также кустарники и низкорослые деревья, но они в основном встречаются единичными экземплярами. Хотя в некоторых странах (например, в Бразилии) в саваннах произрастают редкие леса.

Пустыни

Эти природные экосистемы занимают пятую часть поверхности Земли, их главная отличительная черта — засуха. По ряду признаков выделяют песчаные и песчано-щебневые, каменистые, солончаковые и глинистые пустыни. Также к пустыням относятся отдельные участки в Антарктиде и Арктике, которые на 99% представлены заснеженными территориями. Растительный и животный мир пустынного биома беден. В жарких песчаных областях флора представлена преимущественно суккулентами, запасающими воду с помощью специальных тканей. К ним относятся многие виды молочная и кактусы. Арктические пустыни и вовсе лишены растительного покрова, там встречаются лишь некоторые мхи, лишайники, осоки и злаки.

Степь

Биом умеренных и субтропических широт, характеризующийся безлесьем. В степных регионах всегда жаркое засушливое лето, максимальная температура достигает +50°C. Зима, как правило, малоснежная, умеренно холодная, но случаются и сильные морозы с понижением температуры до 40°C. Растительный покров здесь представлен в основном многолетними ксерофитными травами, деревья почти отсутствуют. По типу растительности и особенностям режима увлажнения выделяют 5 разновидностей степей: горные, луговые или разнотравные, настоящие или ксерофильные, сазовые и пустынные. Некоторые фрагменты степей наблюдаются в лесостепной и полупустынной зонах.

Чапараль

Это биом регионов со Средиземноморским климатом, для которого характерно засушливое лето и влажная мягкая зима с обилием осадков. Фауна этих территорий представлена жестколистными кустарниками. Здесь распространены аденостомы, толокнянки, кустарники вечнозеленых дубов, а ближе к границе — и листопадные виды деревьев и кустарников. Важным элементом в функционировании данного биома является природный пожар, благодаря которому происходит возврат биогенов в экосистему. Без подобных эпизодических выгораний территории, полноценное существование чапаралей было бы невозможно.

Листопадный лес

Распространен в регионах умеренного пояса Северного полушария. Лето здесь умеренно жаркое, зима не слишком суровая, осадки равномерно распределены в течение года. Деревья этого биома являются летнезелеными, т. к. с наступлением холодов они сбрасывают всю листву, чтобы в тёплый период распустить новую. Типичные представители листопадных лесов — дубы, буки, липы, ясени и клены. Встречаются также хвойные виды, в частности ели и сосны.

Тайга

Занимает обширные площади северного умеренного пояса в Северном полушарии (около 15 млн. км). Флора данного биома представлена хвойными видами деревьев, которые образуют густые, растянувшиеся на сотни километров леса. По типам растительности тайгу делят на северную, среднюю и южную, при этом последняя имеет самый богатый видовой состав. Для северных участков обычны низкорослые сосны и ели, в средней тайге распространены ельники-черничники, немалая часть южных территорий занята березово-осинными лесами вторичного происхождения.

Тундра

Расположена между арктическими пустынями и таежными лесами. Климат здесь суровый, характерна высокая относительная влажность и сильные ветры. Вегетационный период в тундре короткий, из растений, способных выживать в таких условиях, преобладают лишайники, мхи и травы, прижимающиеся к поверхности земли. На заболоченных территориях произрастают ягодные кустарнички: голубика, клюква, княженика. Изредка встречаются карликовые деревья.

Морские

Экосистемы, сформированные в водной среде, характеризующейся высокой степенью солености (около 35%), занимают более 70% поверхности нашей планеты. При их классификации учитывается уровень глубины и степень удалённости от береговой линии.

Отрытый океан

Организмы в данной экосистеме распределены неравномерно. По степени освещённости в океане выделяют: верхнюю хорошо освещаемую зону (до 200 м) и нижнюю, почти лишенную света (свыше 200 м). По уровню глубины различают: литоральную зону (до 200 м), батиальную (2500 м), абиссальную (до 6000 м) и ультраабиссальную (свыше 6000 м). Фауна у поверхности воды гораздо богаче, чем на глубине, но и там, в кромешной темноте, есть жизнь. В глубоководных рифовых зонах (около 3000 м) обитают погонофры, креветки, двустворчатые моллюски, некоторые виды рыб и крабы.

Прибрежные воды

Самые благоприятные области для организмов, с очень богатым видовым составом животных и растений. К прибрежным зонам относят коралловые рифы, расположенные в тропических и субтропических широтах, и эстуарии — устья рек, расширяющиеся в месте впадения в моря.

Районы апвеллинга

Это места, где происходит подъем холодных, богатых биогенами вод на поверхность. Они могут располагаться практически в любой области мирового океана, но чаще встречаются у западных границ материков. Самый известный тип апвеллинга — прибрежный, оказывающий существенное влияние на жизнедеятельность человека, поддерживая продуктивность рыболовных областей мирового океана.

Пресноводные

Экосистемы, сформированные в пресноводной среде, занимают всего около 0,8% поверхности Земли и по видовому разнообразию флоры и фауны значительно уступают морским экосистемам. По скорости течения воды все пресноводные водоёмы можно разделить на проточные и стоячие.

Проточные — реки, родники, ручьи

Важным фактором, от которого зависит деятельность этих экосистем, является течение. Именно оно оказывает влияние на распределение организмов и содержание солей и газов. Данные экосистемы неразрывно взаимосвязаны с окружающей наземной средой.

Стоячие — озера, пруды, болота и прочие

Организмы стоячих экосистем в разных слоях воды неоднородны. В верхних слоях главными являются планктон и прибрежная растительность. Эти территории тесно связаны с наземными биомами, поскольку верхний слой водоёмов содержит множество организмов, служащих кормом для птиц и млекопитающих. Средний и придонный слои менее освещены, фауна здесь беднее. Типичные жители средних вод — хищные рыбы. Дно водоёмов обычно покрыто илом, песком, или же может быть каменистым. Здесь обитает большое количество бактерий и грибов, а также некоторые виды придонных рыб, моллюски и ракообразные.

Источник: NatWorld.info

1)
Экосистема фото

Опыты по созданию замкнутых экологических систем с целью жизнеобеспечения человека (для работы в космосе или в экстремальных климатических условиях на Земле, или, скажем, спасения в случае резкого ухудшения условий жизни на планете) велись и ведутся в разных странах, в том числе и у нас. Самый, наверное, эффектный и наглядный из них проводился в 1991-94 годах в Аризоне и был первой масштабной попыткой моделирования процессов, происходящих в естественных экосистемах Земли. На площади в полтора гектара был построен герметичный комплекс из нескольких зданий и оранжерей, внутри которого, помимо жилых и технических помещений, были упрощенно смоделированы 5 биомов: тропический лес, океанский риф, пустыня, саванна и мангровый эстуарий, а также агроценоз для выращивания продуктов питания и скота. Всё это вместе должно было работать как полностью замкнутая экосистема (снаружи обеспечивался только приток энергии, но он и для земных экосистем идет извне — от Солнца), обеспечивающая автономное существование 8 человек на протяжении нескольких лет.

2)
Экосистема фото
Фотографии со строительства «Биосферы-2» неиллюзорно напоминают кадры создания планеты из фильма «Автостопом по Галактике»

3)
Экосистема фото

4)
Экосистема фото

В общей сложности в гигантскую теплицу было заключено около 3000 видов животных и растений, видовой состав которых был подобран так, чтобы наилучшим образом имитировать биосферный круговорот веществ, включающий продуцирование и разложение органики, в том числе и естественное разложение отходов жизнедеятельности людей.

5)
Экосистема фото

6)
Экосистема фото

7)
Экосистема фото

8)
Экосистема фото

Для компенсации перепадов давления в комплексе при изменениях суточной температуры в отдельном куполе был установлен прибор, получивший прозвание «легких» — огромный поднимающийся и опускающийся алюминиевый диск, соединенный со стенами гибкой резиновой мембраной. Компенсатор не столько предотвращал разрушение конструкций при критической разницы в давлении, сколько минимизировал газообмен «Биосферы-2» с атмосферой Земли через микротрещины в конструкции — идеально герметизировать столь огромное помещение практически невозможно, и потери (или приток) возрастают при увеличении градиента давления между внешней и внутренней средой. Общий объём атмосферы комплекса составлял около 204 000 кубометров, обмен с земной атмосферой в единицу времени был – специально замеряли – в 30 раз меньше, чем утечка воздуха из «Спейс Шаттла», находящегося в космосе.

9)
Экосистема фото

10)
Экосистема фото

11)
Экосистема фото

12)
Экосистема фото

26 сентября 1991 года добровольцы-исследователи — четыре мужчины и четыре женщины — закрыли за собой герметические двери и эксперимент начался. Связь с внешним миром обеспечивалась только через интернет и по телефону, ну и взглядами через стеклянные стены.

13)
Экосистема фото

14)
Экосистема фото

15)
Экосистема фото

16)
Экосистема фото
Последний кадр — современный, поэтому мониторы с ЭЛТ перемежаются жидкокристаллическими. Но сделан в том самом куполе, что виден на КДПВ.

Первые же недели эксперимента показали, что воссоздание природного равновесия — не такое уж простое дело. Уровень кислорода начал падать примерно на 0,5% каждый месяц. И дело оказалось не в том, что экспериментаторы неправильно рассчитали количество «колонистов», перенаселив станцию, а в непредвиденном размножении микроорганизмов — те буквально заполонили посевы, саванну и лес, истребляя всходы и меняя экосистему под себя, не считаясь с планами человека. Кстати, с проблемой микробов в космосе человечество столкнулось уже сейчас, например на МКС, где активно размножающиеся в труднодоступных закоулках маленькие поганцы вредят даже механизмам, повреждая полимеры и органику, способствуя коррозии металлов, формированию биопленок и «тромбов» в трубопроводах и системах регенерации воды.

17)
Экосистема фото

18)
Экосистема фото

Второй проблемой стали макроорганизмы. Из-за того, что пищевые цепи искусственных экосистем «Биосферы-2» оказались неполными, урезанными, насекомые и другие беспозвоночные тоже стали вести себя не как было запланировано, а как им вздумается. Почему-то начали вымирать опылители, а численность других созданий в отсутствие естественных врагов стала неконтролируемо расти, превращая их из помощников во вредителей. При этом обнаружились неожиданные побочные эффекты — тараканы, к примеру, взяли на себя роль опылителей, но делу это не сильно помогало: произведенный с их помощью урожай они же и старались пожрать, еще и потребляя в процессе драгоценный кислород.

19)
Экосистема фото

Положение осложнялось тем, что в эксперименте нельзя было использовать пестициды — не по этическим соображениям, а потому что процессы самоочищения в таких небольших, да еще и замкнутых экосистемах проходят очень медленно, а это значит, что отравление химикатами всех обитателей, в том числе и людей, было бы неизбежным.

20)
Экосистема фото

21)
Экосистема фото
Для очистки воды использовались в том числе водяные гиацинты (на переднем плане)

22)
Экосистема фото

В результате «колонисты» (хотя через пару недель после начала эксперимента их стало уже 7 — одна из участниц покинула проект из-за травмы) столкнулись не только с нехваткой воздуха, но и пищи. Пришлось увеличить плотность засева зерновых, а в тропическом лесу дополнительно высадить манго и папайю. На страх вредителям из внешнего мира были доставлены 40 гекконов и 50 жаб.

23)
Экосистема фото

Подселение манго и жаб в принципе не противоречило условиям эксперимента — это была, так сказать, коррекция первоначальных расчетов. Но когда содержание кислорода снизилось с 21% до 15% — как на высоте в 4 км — организаторы эксперимента в тайне от общественности пошли на прямое «читерство»: начали закачивать в комплекс кислород. Гекконы тоже не спасли положение: каждый день приходилось тратить массу времени на ручной сбор вредителей, но и он не помог справиться с продовольственным кризисом, и тогда к кислороду «с большой земли» добавились продукты (эти факты скрывались и были разоблачены впоследствии).

24)
Экосистема фото

В ходе проведения эксперимента обнаружились и другие непредвиденные обстоятельства. Некоторые просто интересные: так, по утрам в оранжереях шел дождь: влага конденсировалась на стеклянной крыше и к утру падала вниз, в результате спустя некоторое время после начала эксперимента «пустыня» стала второй «саванной».

25)
Экосистема фото

26)
Экосистема фото

Из неожиданных проблем стоит отметить отсутствие ветра: оказывается, для нормального развития деревьям нужно регулярное раскачивание, без него механические ткани древесины оказываются недостаточно развитыми — деревьям тоже нужна тренировка! Без ветра же стволы и ветви деревьев «Биосферы-2» становились хрупкими и ломались под тяжестью собственного веса.

27)
Экосистема фото

В отличие от ветра, фактор волн для полноценного функционирования «океана» и «эстуария» создатели предусмотрели — специальный механизм создавал движение воды. Кораллы за время эксперимента дали 85 дочерних колоний. Впрочем, многие другие обитатели «океана» и других биомов вымерли или уменьшились в числе.

28)
Экосистема фото

Довольно быстро в полный рост встала проблема психологической совместимости. В итоге команда постоянно запертых в компании друг друга в закрытом помещении людей распалась на две противоборствующие группы. Подробности не разглашаются, но, пишут, бывшие участники эксперимента избегают встреч с членами «противоположного лагеря» и по сей день. Фактор известный, на нем построено множество реалити-шоу, но проведению эксперимента, посвященного совсем другой тематике, это сильно мешало. И это всё происходило в условиях постоянной связи с внешним миром, возможности помощи психолога и т.п. — а какие формы может принимать неожиданно возникающий антагонизм в небольшом коллективе в полностью автономной колонии, большинство из нас может только догадываться.

29)
Экосистема фото

В итоге 26 сентября 1993 года эксперимент пришлось прервать. В 1994 году была предпринята вторая попытка, в результате которой спонсоры отказались от проекта, признавая, что эксперимент не принес ожидаемых результатов, и передали комплекс Колумбийскому университету. В 1996 году и там решили прекратить эксперимент и удалить из сооружения людей, поскольку так и не смогли решить проблему питания и сохранения неизменного состава воздуха. Исследования искусственной биосферы продолжались, но уже без подопытных людей и без строгого автономного режима. Некоторые биомы стали доступны для экскурсантов, и на фотографиях с таких экскурсий можно наблюдать сегодняшнее печальное положение искусственной биосферы:

30)
Экосистема фото

31)
Экосистема фото

В 2005 году «Биосфера-2» была выставлена на продажу, и насколько я понял, продается по сей день.

32)
Экосистема фото

33)
Экосистема фото

34)
Экосистема фото

35)
Экосистема фото

36)
Экосистема фото

Эксперимент этот можно назвать провалившимся, но не безрезультатным. Безусловно, в ходе его проведения и при последующей работе было получено множество данных, которые пригодятся (и уже пригождаются) в дальнейших исследованиях такого рода. В целом же можно сказать, что путь до создания полностью автономных и успешно регулирующихся экосистем, способных обеспечить существование, скажем, колонистов на другой планете, предстоит еще неблизкий. Впрочем, черт с ними, с колонистами — «Биосфера-2» это один из ярких примеров, когда вложения в исследования космических технологий в конечном счете помогают улучшению жизни здесь, на Земле.

37)
Экосистема фото

38)
Экосистема фото

И второй, «обратный» вывод из этой увлекательной истории: мы не сможем покорить космос, пока не научимся сохранять, восстанавливать и регулировать среду обитания на Земле. Мы пока не можем основать долгосрочные автономные поселения на орбите и других планетах, и дело отнюдь не в финансировании и мощности двигателей: у нас пока нет необходимых знаний и опыта для создания среды жизнеобеспечения. А уж «спасение в космосе от экологической катастрофы» – вообще оксюморон, вроде круглого квадрата.

39)
Экосистема фото

источник

Источник: russ-kosmos.livejournal.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.