Энергия ветра картинки


Ветер – это не просто сложное физическое явление. В современном мире он используется как источник энергии и представляет собой экономически ценный продукт. Ветроэнергетика в мире становится всё более востребованной, над развитием этой отрасли работают учёные различных специальностей.

Насколько велик потенциал ветроэнергетики? Какими достоинствами и недостатками она обладает? Где применяется? Пришло время ответить на эти вопросы.

С чего всё начиналось

ВетрякиСуществует общераспространённое заблуждение, что ветроэнергетика зародилась лишь в XVII–XIX столетиях. Однако на самом деле ветер как источник энергии активно использовался представителями древних цивилизаций. Вот несколько красноречивых примеров из истории:

  1. Уже в III–II веках до н. э. жители Месопотамии изобрели первые прототипы ветряных мельниц для размола зерна. Лопасти таких устройств, вращаясь под действием ветра, приводили в движение массивный жернов. Он, в свою очередь, растирал зерно в муку. Так энергия ветра позволила сэкономить силы и время нескольких сотен рабочих.

  2. В Древнем Египте ветряные мельницы появились примерно в тот же период.
  3. В Древнем Китае с помощью ветра производилась откачка водных масс с рисовых полей.
  4. В XII веке технологии, базирующиеся на использовании воздушных потоков, стали распространяться по Европе.

Долгое время ветряная энергетика не могла похвалиться хорошими результатами. Она немного облегчала жизнь и работу человека, но не могла послужить на благо всего человечества.

И только в XX веке технический прогресс коснулся этой отрасли. Учёные начали разрабатывать оборудование, позволяющее преобразовывать энергию воздушных потоков в электроэнергию.

Востребованность

Сегодня энергия ветра используется человеком всё активнее.

По состоянию на 2015 год ветроэнергетика занимает в общем энергобалансе:

  • Дании – 42%;
  • Португалии – 27%;
  • Испании – 20%;
  • Германии – 8,6%.

Перечисленные страны являются лидерами по получению электроэнергии из ветра. К данному списку стремятся примкнуть Индия, США, Китай.

Ведущие государства мира строят планы по увеличению количества ветропарков. В Китае и некоторых странах ЕС принимаются законы об использовании возобновляемых источников энергии и повышении мощностей. Всё это способствует развитию ветроэнергетики.

Применение

Парк ветряков

Использование энергии ветра является одним из самых перспективных направлений в современной энергетике. Наглядное сравнение: потенциал ветра более чем в 100 раз превышает потенциал всех рек Земли.

Ветропарки бывают:


  1. Крупные.Обеспечивают электричеством города и промышленные предприятия.
  2. Небольшие.
  3. Вырабатывают электроэнергию для удалённых жилых районов, частных ферм.

Набирает популярность офшорное строительство: ветроустановки возводятся прямо на воде, в 10–12 км от береговой линии океана. Такие парки приносят больше прибыли, чем традиционные. Связано это с тем, что скорость ветра над океаном в несколько раз выше, чем на суше.

Достоинства

Энергия ветра

Ветровая энергетика обладает рядом значимых преимуществ, таких как:

  1. Общедоступность.
    Ветер – возобновляемое «сырьё». Он будет существовать, пока есть солнце.
  2. Безопасность для природы и человека.
    Как и все альтернативные источники энергии, ветер экологически безопасен. Оборудование, преобразующее ветряную энергию, не создаёт выбросов в атмосферу, не является источником вредного излучения. Пути накопления, передачи и использования энергии ветра – экологичные. Производственная техника безопасна для человека, пока он использует её по прямому назначению, соблюдая при этом все правила безопасности.

  3. Успешная конкурентоспособность.Ветряная энергия – хорошая альтернатива атомной. Эти отрасли борются за первенство в возобновляемой энергетике. Но АЭС несут серьёзную угрозу для человечества. В то же время ещё не зарегистрирован ни один случай неисправности ветряного энергокомплекса, сопровождающийся массовой смертностью рабочих и простых жителей.
  4. Обеспечение людей большим количеством рабочих мест.Статистика зафиксировала, что уже в 2015 году отрасль обслуживает 1 млн человек. Развитие ветроэнергетики всё ещё продолжается, поэтому данная сфера народного хозяйства ежегодно предоставляет людям тысячи рабочих мест по всему миру. Это повышает процент занятости населения и благотворно влияет на экономику отдельного региона, всей страны и целого мира.
  5. Лёгкость в работе и управлении.Оборудование требует лишь периодических ТО. Ремонт турбин или их замена – задача средней сложности. Хорошо обученные специалисты без труда обеспечивают работу ветрогенераторов, их исправность. Для этого нужны лишь базовые навыки.
  6. Перспективность.Ветроэнергетика находится только на середине своего пути. Потенциал данной отрасли не раскрыт на все 100%, а значит – всё ещё впереди. Современные научно-технические открытия позволят повысить эффективность ветровой энергетики, сделать ее более прибыльной.
  7. Экономическая выгода.Любое предприятие в начале своей работы требует больших вложений. И в отрасли ветроэнергетики расходы на оборудование стабильны, в то время как цены на электроэнергию увеличиваются. Следовательно, доходы производства постоянно растут.

Все эти характеристики способствуют развитию и глобализации ветроэнергетики.

Недостатки

Ветроэнергетика не имеет каких-либо серьёзных недостатков, но и в этом аспекте есть проблемы:

  1. Высокий стартовый капитал.Запустить такой бизнес очень сложно, ведь закупка и монтаж оборудования требуют больших инвестиций.
  2. Выбор территории.Не все регионы Земли подходят для строительства ветроэнергетических комплексов. Подбор местности осуществляется на основе высокоточных расчётов.
      При этом учитываются:

    • количество ветреных дней;
    • скорость воздушных потоков;
    • частота их изменения;
    • прочее.
  3. Отсутствие точных прогнозов.Невозможно точно предсказать, что характеристики ветра в данной местности останутся стабильными на 10/20/100 лет. Сложно рассчитать, какое количество энергии будут вырабатывать ветрогенераторы.

Люди не могут «приручить» ветер, поэтому говорить о стабильности в работе ветрокомплексов невозможно. Впрочем, это относится ко всем возобновляемым источникам энергии.

Ложные теории

Противники ветроэнергетики придумывают различные лжетеории:


  1. Шум, создаваемый ветрогенераторами, вредит экосистеме.Ветряные станции и правда издают шум, однако на расстоянии 30–40 метров он уже воспринимается как фон (естественный уровень шума), поэтому никакого ущерба экологии не наносит.
  2. Ветрогенераторы убивают птиц.Да, это действительно так. Однако от ветряных станций умирает столько же птиц, сколько от высоковольтных сетей и автомобилей.
  3. Вблизи ветряных комплексов портится сигнал ТВ. Оборудование никак не влияет на качество сигнала спутникового, цифрового и аналогового ТВ.

Основная задача таких выдумок – привлечение большего количества людей на сторону традиционной энергетики, которая является более прибыльной для современных предпринимателей.

Источник: ekoenergia.ru

Ветроэнергетические установки (ВЭУ) преобразует кинетическую энергию ветра в механическую или электрическую энергию, удобную для практического использования. ВЭУ производят электрическую энергию для бытовых или промышленных нужд. Какие ветротурбины наиболее эффективные и экономически выгодные? Как определить мощность ветроустановки по размерам ветроколеса? Ответы на эти вопросы см. ниже.

Какие бывают ветротурбины?


Энергия ветра картинки
Виды ветроустановок по ориентации оси вращения

Ветротурбины отличаются по ориентации оси вращения по отношению к направлению ветра и по типу ветротурбины.

По ориентации оси вращения ветротурбины подразделяются на ветроустановки с вертикальной осью вращения и ветроустановки с горизонтальной осью вращения. Ветроустановки с горизонтальной осью составляют около 95% всех ветроустановок, подключенных к сетям энергосистем.

Ветротурбины также принципиально отличаются по тому, какую силу они используют для преобразования в механическую — силу давления ветра или подъемную силу. От этого свойства существенно зависит КПД ветротурбины. Теоретические КПД равны: для первого типа 0,22, для второго — 0,59 (согласно теории Жуковского Бетца). 

Энергия ветра картинки

Энергия ветра картинки

Энергия ветра картинки
Ветротурбина чашечного типа (использует силу давления ветра)

Ветроустановки, использующие силу давления ветра, имеют право на жизнь, но наукой и опытом давно доказана их очень низкая эффективность по сравнению с пропеллерными или другими, использующими подъемную силу крыла. Это примерно как гребные колеса у дореволюционных пароходов по сравнению с обычным винтом любого современного корабля или катера. Такие ветротурбины имеют большую материалоемкость и, соответственно, высокую удельную стоимость.


Ортогональные ветроустановки с вертикальной осью вращения, которые используют подъемную силу крыла, имеют КПД немногим менее пропеллерных, поэтому их эффективность также высока. Но у таких вертикально-осевых турбин есть другой недостаток — они не могут самостоятельно начать вращение, и для их запуска их надо раскрутить — или от сети, или с помощью другой ветротурбины, имеющей стартовый момент вращения (часто используется турбина Савониуса для этих целей).

Энергия ветра картинки

Вертикально-осевые ветротурбины (ВОВТ), как правило, менее эффективны, чем горизонтально-осевые ветротурбины (ГОВТ), по следующим причинам:

  • Лопасть испытывает сопротивление при вращении, т.к. на части траектории она должна двигаться противоположно направлению ветра
  • ВОВТ часто установлены на более низкой высоте (земля или крыша здания), где скорость ветра меньше.
  • ВОВТ имеют проблемы, связанные с вибрацией, например, шум и более быстрый износ и разрыв опорной конструкции (так как воздушный поток имеет большую турбулентность на низкой высоте).
  • Нагрузка на электрогенератор от массы ветротурбины, если она установлена на одном валу с электрогенератором.

Энергия ветра картинки
Зависимость КПД ветротурбины от ее типа и быстроходности

Важным параметром ветроколеса является быстроходность. Быстроходность — это отношение линейной скорости лопасти к скорости ветра. У ветротурбин, использующих силу давления ветра, быстроходность всегда меньше 1. К таким ветротурбинам относятся карусельные, чашечные и другие аналогичные типы ветротурбин. Ротор Савониуса имеет быстроходность немного больше единицы потому, что кроме силы давления ветра в нем используется еще и реактивная сила. У ветротурбин, использующих подъемную силу крыла, скорость лопасти больше скорости ветра.

Как это не парадоксально, но чем меньше лопастей в ветроколесе, тем выше его КПД. Это проверено как теоретическими исследованиями, так и продувками в аэродинамической трубе, хотя разница между 1, 2, 3 лопастями незначительна. Однако, с уменьшением количества лопастей также уменьшается момент страгивания и ухудшается работа при низких скоростях ветра. У однолопастных ветротурбин также есть серьезная проблема с балансировкой и надежностью ветроколеса.


Ветрогенераторы с 2-3 лопастями относятся к быстроходным с более высоким КПД и частотой вращения, но при этом у них низкий стартовый момент вращения ротора. Поэтому быстроходные ветрогенераторы выгодно объединять с электрическим генератором, так как электрический генератор имеет высокую частоту вращения (для улучшения массогабаритных характеристик) и низкий пусковой момент. Тихоходные многолопастные ветротурбины обычно работают в связке с водяными насосами, у которых большой момент запуска и меньшая частота вращения. Быстроходные 3-х лопастные ветрогенераторы получили большее распространение, чем 1-2-х лопастные, несмотря на их высокую стоимость. 3-х лопастным ротором генерируется меньше вибрация и выглядит он более эстетично. Поэтому во всем мире оптимальным количеством лопастей горизонтально-осевой ветротурбины признано 3.

От чего зависит мощность ветротурбины?

Мощность ветротурбины зависит от скорости ветра, площади ометаемой поверхности и эффективности ветротурбины. Это основные факторы, влияющие на вырабатываемую ветротурбиной мощность (и, соответственно, энергию). На выработку также влияет турбулентность ветропотока, плотность воздуха, равномерность распределения скорости ветра по ометаемой площади.

Скорость ветра — важнейший элемент в проектировании и использования ветроустановки. Вырабатываемая мощность пропорциональна кубу скорости ветра и квадрату диаметра ротора.


о означает, что при удвоении скорости ветра возможная вырабатываемая мощность увеличивается в 8 раз. Так, ветроустановка, работающая при средней скорости 6 м/с, генерирует мощность на 44% большую, чем при скорости 5 м/с. Если скорость ветра определяется местом, где сооружается ветроустановка, то диаметр ее ротора — это элемент конструкции, величина которого зависит от многих расчетных параметров. Чаще всего решается обратная задача: задается проектируемая мощность ВЭУ и далее определяется требуемый диаметр при определенной расчетной скорости.

Формула мощности ВЭУ выглядит следующим образом:

P=½·ρ·A·V3·Cp·ηг·ηм, Вт

где ρ= 1,22 — плотность воздуха (стандартная), кг/м3
V — скорость ветра, , м/с
ηг·ηм— коэффициенты полезного действия генератора и механической передачи между ветроколесом и генератором,
Cp — коэффициент использования энергии ветра (КИЭВ), зависящий от профиля лопастей и других режимных параметров, предельное значение которого равно 0,593, а достигнутое в эксплуатации- 0,4-0,45,
А — площадь ветротурбины, в случае пропеллерной турбины вычисляется по формуле:

А=¼π·D2, м2

где D, м- диаметр ротора,π=3,14.

Диаметр ротора ВЭУ по мере возрастания мощности ветроустановки от 1 до 3000 кВт увеличивается от 2 до 100 м, а высота башни от 8 до 100 м. Для ВЭУ выше 150 кВт диаметр ротора и высота башни примерно равны.

Скорость ветра увеличивается с высотой над уровнем земли, поэтому чем выше мачта ветротурбины, тем более производительной будет ветроустановка.

Не стоит увлекаться поиском ВЭУ, начинающих работать на малых скоростях ветра — до 3 м/с, так как на этих скоростях ветра его энергия ничтожно мала. Например, для ВЭУ с диаметром винта 5 м вырабатываемая мощность при скорости ветра 2 м/с будет менее 30 Вт, причем половина этой мощности уйдет на всякие потери в механических элементах, генераторе и контроллере, а оставшиеся 15 Вт — это мизер для аккумуляторов, рассчитанных на номинальную мощность 5 кВт. Так что, кроме наслаждения от вида вращающегося ветроколеса, вы больше ничего не получите.

Очень важным параметром в проектировании ВЭУ является коэффициент использования установленной мощности (КИУМ), дающий представление об эффективности работы ВЭУ. Это отношение средней выработки генерирующего устройства к максимально возможной. Большинство современных ВЭУ работают с коэффициентом использования установленной мощности от 25 до 35%. Электростанции, работающие на невозобновляемых источниках энергии, имеют коэффициент использования установленной мощности от 40 до 80%. Лучшие ветроустановки в хороших ветровых условиях работают с коэффициентом 0,5. На КИУМ влияет кроме среднегодовой скорости ветра также и время, которое затрачивается на техническое обслуживание и ремонт ветроустановки.

Ветроустановка состоит из следующих основных подсистем и узлов:

  1. ротор или лопасти, который преобразует энергию ветра в энергию вращения вала,
  2. кабину или гондолу, в которой обычно расположен редуктор ( некоторые турбины работают без редуктора),
  3. генератор и другие электромеханические системы,
  4. башню или мачту, которая поддерживает ротор и кабину,
  5. электрическое и электронное оборудование, такие как панели управления, электрические кабели, оборудование заземления, оборудование для подключения к сети, система молниезащиты, система накопления электроэнергии и ее стабилизации, и др.

Как выбрать ветрогенератор?

Энергия ветра картинки
А. Ортогональный В. С горизонтальной осью С. Геликоидный ротор или Ротор Горлова D. Многолопастной ротор E. Ротор Дарье

Распространенная ошибка — выбирать мощность ветроустановки по пиковой мощности нагрузки. Ветрогенератор, также как и солнечные батареи, является источником энергии, а не мощности. Поэтому расчет ветроэнергетической системы ведется в несколько шагов, и желательно, если это сделает специалист.

Для выбора ветрогенератора сначала Вам необходимо определить своё потребление в кВт*часах в месяц, пиковую (суммарную) мощность всех приборов и постараться узнать среднегодовую и среднемесячные скорости ветра в Вашей местности. Последний параметр не всегда возможно определить с достаточной точностью. Даже если вы получите данные по многолетним скоростям ветра от ближайшей метеостанции, не факт, что в месте установки вашей ветротурбины будет именно такая скорость ветра. Поэтому для больших ветростанций необходимо обязательно проводить мониторинг скорости ветра хотя бы в течение одного года, а затем сделать корреляцию полученных данных с данными от ближайшей метеостанции. Для малых ветроустановок такой путь слишком дорог, и очень часто малые ВЭУ устанавливаются на страх и риск хозяина. В таких случаях обычно, если ветра недостаточно, признается, что решение об установке ветротурбины было ошибочным. Если же ветер хороший, то следующим шагом обычно является увеличение мощности малой ветростанции.

Для получения электричества в необходимом объёме нужно понимать, что количество вырабатываемой ветряком энергии напрямую зависит от ометаемой ветротурбиной площади или максимального сечения ветротурбины. Для минимального обеспечения пары лампочек, ТВ, холодильника, электрочайника — диаметр ветряка должен быть не менее 2,5 метров при средних по силе ветрах.

Особое внимание стоит уделять не только мощности ВЭУ (именно ВЭУ, а не инвертора, входящего в комплект), но и при какой скорости ветра эта мощность может быть получена. Некоторые продавцы представляют завышенные показатели. Для этого не поленитесь подсчитать по несложной формуле мощность, которую способен отдать ветряк с винтом конкретного диаметра. Эта мощность практически зависит только от скорости ветра V и диаметра ветротурбины D, а все остальные факторы — количество лопастей, их вес, площадь, профиль, крутка, генератор, подшипники и т. д. — второстепенные и большой погрешности не дают.

Упрощенная формула расчета реально отдаваемой ветром мощности в зависимости от скорости ветра и диаметра винта:

Р = D2V3/7000, кВт,

с точностью ±20% (зависит от КПД турбины и генератора). +20% — идеальная ВЭУ, ее цена увеличится в 2-3 раза. -20% — первый ветряк энтузиаста-любителя. При равной мощности ВЭУ выбирайте ту, у которой диаметр ветроколеса больше.

Некоторые производители представляют результаты продувок своих ветроэлектрических установок по мощности в аэродинамической трубе. Это хорошо, и говорит о серьезном подходе к делу. Однако, необходимо учитывать, что мощность в аэродинамической трубе и в природе на ветру отличаются примерно на 10-30% вследствие идеализации воздушного потока в трубе. Реальный поток ветра имеет турбулентности, которые существенно ухудшают параметры ветроколеса.

Мощность, вырабатываемая ветрогенератором, пропорциональна кубу скорости ветра. Это означает, что мощность ветрогенератора на слабых ветрах (даже если он вращается) очень мала. Но, с усилением ветра, идет резкое нарастание мощности. А поскольку ветер на практике дует с постоянной скоростью и направлением только в аэродинамической трубе, понятно, что мощность, вырабатываемая ветрогенератором, является постоянно меняющейся по времени величиной. Поэтому любая энергетическая система с использованием ветрогенератора в качестве источника энергии должна иметь стабилизирующее звено.

В малых автономных системах роль такого звена обычно играет аккумуляторная батарея. Если мощность ветрогенератора больше мощности нагрузки, батарея заряжается. Если мощность нагрузки больше – батарея разряжается. Из этого следует следующая важная особенность ветрогенератора, как источника мощности: если большинство других источников выбираются по мощности пиковой нагрузки, ветрогенераторы следует выбирать, исходя из величины потребления электроэнергии в месяц (или в год, как кому нравится).

Проиллюстрируем это на примере. На берегу моря, где средняя скорость ветра приближается к 6 м/с, стоит домик, куда приезжает семья из трех человек на выходные. Электрооборудование включается тоже только на выходные. В день потребление достигает 15 кВт*ч, при этом пиковая нагрузка – до 3 кВт. Следовательно, в месяц потребление энергии равно 120 кВт*ч. При среднегодовой скорости ветра 6 м/с выработку 120 кВт*ч в месяц может обеспечить небольшой 700-ваттный ветрогенератор. Кроме того, для аккумулирования энергии в течение 5 дней потребуется батарея большой емкости, и инвертор (который преобразовывает постоянное напряжение батареи в стандартное переменное) мощностью 3 кВт, чтобы обеспечить пиковые нагрузки.

Как можно видеть, в каждом из вышеописанных случаев мощность ветрогенератора отличается в разы от пиковой мощности нагрузки. Мощность пиковой нагрузки определяет мощность преобразователя. Сам ветрогенератор определяет только величину выработки в определенный временной промежуток при определенной среднемесячной скорости ветра. Кроме средней скорости ветра, существуют более подробные вводные данные для оценки ветровых ресурсов, называемые параметрами распределения Вейбулла, которые отражают распределение длительности ветра определенной силы для данного места, они используются при проектировании ветропарков мощностью в десятки МВт.

В каких случаях выгодно использовать ветрогенератор?

Ветровые электростанции установки наиболее выгодно использовать в местах, где невозможно провести общую электросеть, или соединение является очень затратным, а также — в местах с частыми отключениями электричества. Ветровые электростанции смысл устанавливать, если в месте становления среднегодовая скорость ветра превышает 3 м/с.

В общем случае, при среднегодовой скорости ветра более 4 м/с на высоте 10 м (на этой высоте на метеостанциях устанавливаются анемометры — приборы, измеряющие скорость ветра) возможно эффективное применение ветроустановок, а ветер с меньшей скоростью годится для водоподъемных устройств.

Наиболее экономически выгодное применение ВЭУ имеет место, если ветротурбины объединены в группы. Их называют ветроэлектрическими станциями (ВЭС), а за рубежом «ветровыми фермами» (wind farm). Их мощность колеблется от сотен киловатт до сотен мегаватт. Ветроустановки большой мощности не предназначены для автономной работы или работы параллельно друг с другом. Поэтому как только отключается ЛЭП (линия электропередачи), связывающую ВЭУ с энергосистемой, останавливаются и ВЭС. Обычно при проектировании обеспечивается связь с двумя ЛЭП с разных точек энергосистемы. Для одиночных ВЭУ и небольших ВЭС, питающих определенную нагрузку, нужно иметь резервный источник электроснабжения (дизель-генератор, газотурбинная установка, солнечные батареи).

Хорошими ветровыми условиями в России обладают следующие субъекты РФ: Архангельская, Астраханская, Волгоградская, Калининградская, Камчатская, Ленинградская, Магаданская, Мурманская, Новосибирская, Пермская, Ростовская, Сахалинская, Тюменская области, Краснодарский, Приморский, Хабаровский края, Дагестан, Калмыкия. Карелия, Коми. Ненецкий автономный округ, Хакасия, Чукотка, Якутия, Ямало-Ненецкий автономный округ.

По опыту эксплуатации ветропарков, установленных в Российской Федерации, их КИУМ в среднем равен 12%. Как видим, российские ветропарки имеют невысокий КИУМ.  Это связано как с невысокой среднегодовой скоростью ветра в местах их установки, так и с большим временем простоя.

Какие нужны документы и разрешения для установки ветрогенератора?

Импортируемые ветроустановки не подлежат сертификации. Вы можете без проблем установить на своей территории для себя ветрогенератор мощностью до 75 кВт и высотой до 30 метров для личного некоммерческого использования. Для этого не нужны никакие документы, справки или разрешения.

Обсуждения по теме с нашего форума

  • Нужно ли разрешение на установку ветряков?
  • Ветрогенератор на крыше 9-ти этажного здания это возможно!?
  • солнечная панель и ветрогенератор как совместить?

 

Эта статья прочитана 25238 раз(а)!

Источник: www.solarhome.ru

Устройство ветряной установки

Ветрогенераторы отличаются абсолютной экологической чистотой и способны обеспечивать бесплатной энергией потребителей в течение неограниченного времени. Ветряные генераторы – ВЭС обладают различной мощностью, что дает возможность использовать их в разных областях.

Максимальной эффективности ветряной электростанции можно добиться, установив ее в местах с постоянными активными воздушными потоками. Обычно для этого используются горы и холмы, берега морей и океанов и другие аналогичные условия. Основной деталью установки служит крыльчатка, выполняющая функцию турбины. В большинстве случаев используются трехлопастные конструкции ВЭС в виде пропеллера, устанавливаемые на большой высоте от земной поверхности.
Энергия ветра картинкиЭнергия ветра картинки

Пропеллерные конструкции ВЭС в случае необходимости могут управляться. При слишком высокой скорости ветра, производится изменение угла атаки лопастей, вплоть до самого минимального. Это приводит к снижению ветровой нагрузки на турбину. Тем не менее, под действием ураганов, крыльчатки ветровых электростанций нередко подвергаются деформациям, и вся домашняя установка выходит из строя. Полностью избежать негативных воздействий не получается, поскольку электрические генераторы размещаются на высоте, составляющей в среднем 50 м. За счет этого удается использовать более сильные и стабильные ветра, господствующие на больших высотах.

Принцип работы

Практически все ветровые установки имеют общий принцип работы. Под действием воздушного потока лопасти приходят в движение и, связанные специальным приводом с ротором, вызывают его вращение. Сам ротор помещен внутрь статорной обмотки, и в результате вращения происходит образование электрического тока. Лопасти ВЭС обладают особенными аэродинамическими свойствами, поэтому турбина вращается с высокой скоростью.

Каждая лопасть с одной стороны ровная, а с другой – закругленная. Когда воздух проходит закругленную сторону, на этом участке создается вакуум, засасывающий лопасть и уводящий ее в сторону. За счет этой энергии возникает общий крутящий момент. В этом состоит основной принцип работы станций.

Энергия ветра картинки

Полученное электричество накапливается в аккумуляторной батарее. Количество произведенной энергии зависит от скорости вращения лопастей и от скорости воздушного потока. Частота произведенного электрического тока такая же как в домашней сети, поэтому энергия, полученная от ветровой электростанции, вполне пригодна для питания приборов и оборудования. Однако, полученный переменный ток не может сразу аккумулироваться, для этого он должен быть преобразован в постоянный ток. Подобное преобразование выполняется специальными электронными устройствами, расположенными в турбине.

Зарядка аккумуляторной батареи управляется контроллером. По мере накопления заряда, лопасти замедляют вращение, а при разрядке они вновь начинают крутиться. Такой режим работы дает возможность поддерживать заряд АКБ на заданном уровне.

Работа системы торможения

При высокой скорости воздушного потока ветровые электростанции могут выйти из строя. Чтобы этого не случилось, в конструкции применяется тормозная система. В ней используется сила действия вращающихся магнитов ротора. Они не только индуцируют ток в обмотках статора, но и в определенной ситуации замедляют движение вала. С этой целью требуется создать короткое замыкание, вызывающее противодействие и замедляющее вращение.

Энергия ветра картинки

Автоматическое торможение наступает при скорости ветра свыше 50 км/ч. Если скорость возрастает до 80 км/ч, в этом случае происходит полная остановка лопастей. Конструкция турбины позволяет максимально эффективно использовать энергию ветра и путем двойного преобразования энергии получать электрический ток. Наличие аккумуляторной батареи дает возможность использовать электроприборы при полном отсутствии ветра.

Некоторые конструкции установок оборудованы ветровым датчиком, собирающим информацию о параметрах воздушного потока. В конечном итоге мощность ветровой установки на выходе будет зависеть от мощности подключенного инвертора. Исходя из этого показателя определяется и максимально возможное количество подключаемых приборов. С целью увеличения выходной мощности установки, рекомендуется параллельное подключение сразу нескольких инверторов. В трехфазных системах на каждую фазу устанавливается собственный инвертор.

Классификация

Основными критериями, определяющими типы ветряных установок, являются следующие:

  • Различие по количеству лопастей. Быстроходные и малолопастные имеют до 4 лопастей, а 4 и выше относятся к тихоходным многолопастным устройствам. Чем меньше количество лопастей, тем выше обороты двигателя.
  • Величина номинальной мощности. Бытовые – до 15 кВт, полупромышленные – от 15 до 100 кВт, промышленные – от 100 кВт до 1 Мвт. Границы между показателями довольно условные, поэтому установки применяются там, где это действительно необходимо.
  • Направление оси. В конструкциях используются два типа. В первом случае это горизонтальная ось, расположенная перпендикулярно относительно движения воздуха, напоминающая обычный флюгер. Такие генераторы отличаются более высоким КПД и приемлемой стоимостью. Второй вариант – это вертикальная ось, благодаря которой конструкция генератора становится более компактной. Она не зависит от направления ветра, а ее лопасти изготовлены в виде турбин. Нагрузка на ось значительно снижена, поэтому и мощность таких установок гораздо меньше. В некоторых электростанциях одновременно используется несколько генераторов с различными осями, объединенными в сеть, что позволяет получить высокую мощность на сравнительно небольшой площади.

Энергия ветра картинки

Существует отдельная классификация ветровых электростанций по месту их расположения. Среди них можно выделить три основных типа:

  • Наземные установки, получившие наиболее широкое распространение. Они монтируются на холмах и высотах, а также на специально подготовленных площадках. Строительство ведется с использованием дорогостоящей подъемной техники, поскольку все основные конструкции устанавливаются на большую высоту. Несколько устройств объединяются в общую систему с помощью электрических кабелей.
  • Прибрежные ветровые электростанции. Строятся неподалеку от берегов морей и океанов. Работа системы зависит от морского бриза, который создает воздушные потоки с определенной периодичностью. Сам бриз возникает в результате неравномерного нагрева поверхностей водоемов и суши. Днем движение воздуха осуществляется в направлении с воды на сушу, а ночью, наоборот, с побережья к водоему. Таким образом, получение электроэнергии происходит круглосуточно, без каких-либо перерывов.
  • Шельфовые ветряные электростанции. Устанавливаются в море далеко от берега, на расстоянии 10-12 км. В этом случае генераторы используют энергию, создаваемую регулярными морскими ветрами. Для установки используются участки морского дна, расположенные на незначительной глубине. Фундамент конструкции представляет собой сваи, забиваемые в грунт на глубину до 30 м. Передача электроэнергии на берег, осуществляется при помощи подводного кабеля.

Особенности выбора

Основным критерием, которым руководствуются покупатели, являются размеры ветряной установки. Чем больше ее размер, тем выше вырабатываемая мощность. Поэтому, выбирая ветряные электростанции для дома, нужно заранее рассчитать месячное энергопотребление. Полученный результат умножается на 12 месяцев.

Далее расчеты для частного дома ведутся при помощи формулы: AEO = 1.64 х D х D х V х V х V, в которой АЕО является электроэнергией, потребляемой за год, D – диаметр ротора в метрах, V – среднегодовая скорость ветра в м/с. Подставив нужные значения, можно легко рассчитать размеры требуемой установки.

Энергия ветра картинки

Приобретая электростанцию, следует заранее продумать о месте ее расположения. В этом случае учитываются следующие факторы:

  • Территория возле генератора должна быть свободной от построек, сооружений, деревьев и других факторов, снижающих продуктивность установки. Имеющиеся помехи располагаются на расстоянии не ближе 200 метров от места установки.
  • Высота конструкции для монтажа генератора должна быть как минимум на 2-3 метра выше помех, имеющихся на прилегающей территории.
  • Расстояние от жилых домов – не менее 30-40 м, поскольку при вращении лопастей создается некоторый шум, вызывающий у окружающих определенный дискомфорт.
  • Следует учитывать среднегодовые изменения погодных условий, когда в одном и том же месте в течение года будет вырабатываться разное количество электроэнергии.

Преимущества ветровых генераторов

Ветровые электростанции уже долгое время используются в быту, на производстве и других областях.

Энергия ветра картинки

За это время удалось выявить их основные положительные качества и преимущества:

  • Энергия ветра, используемая для ветроэлектростанций, является бесплатной и самое главное – возобновляемой. Устройства не загрязняют окружающую среду и не выделяют каких-либо вредных веществ. В перспективе планируется еще шире использовать экологически чистые ветровые электростанции в России, что позволит сократить количество обычных установок с вредными выбросами.
  • Снижается зависимость электроснабжения через центральные электрические сети.
  • Широкие перспективы для дальнейшего развития и внедрения новых прогрессивных технологий, и это не последние достоинства этих установок.
  • Постепенное снижение затрат на получение энергии, без которых не обойтись на первоначальном этапе. В течение последних 20 лет стоимость оборудования и комплектующих снизилась примерно на 80%. Энергия ветра становится наиболее прибыльной среди всех альтернативных источников электроэнергии.
  • Ветряки имеют достаточно высокий срок эксплуатации, составляющий 20-30 лет. В течение этого срока окружающий ландшафт остается неповрежденным.
  • Простота сборки и дальнейшего использования. Ветряная электростанция монтируется очень быстро, затраты на ремонт и обслуживание сравнительно низкие. Произведенная электроэнергия количественно превышает затраченную энергию ветра примерно в 85 раз. Потери при передаче электроэнергии сравнительно невысокие.

Минусы ветровых электростанций

Энергия ветра картинки

Идеальных устройств не существует в принципе. Это касается и ветровых установок, обладающих специфическими недостатками:

  • Существенные инвестиционные вложения в ветряные электростанции на первоначальном этапе. Хотя они и снижаются, их нельзя полностью сбрасывать со счетов при планировании.
  • Непостоянство и непредсказуемость силы и направления ветровых потоков, вызывающих колебания в количестве выработанной энергии. Иногда ветер может отсутствовать в течение нескольких дней, и потребители полностью остаются без электричества.
  • Движущиеся элементы ветряных установок нередко убивают пролетающих рядом птиц и летучих мышей. Особую опасность они представляют в периоды массовых миграций. Таким образом, определенный вред экологии все-таки наносится, хотя он и не носит системного характера.
  • Работа ветрогенераторов сопровождается постоянными шумами низкой частоты и практически неслышным инфразвуков. Эти минусы ветряных электростанций, превращаясь в отрицательные факторы, негативно воздействуют на человека, вызывая усталость и дискомфорт. В некоторых случаях лопасти, вращаясь с высокой скоростью, могут привести к радиолокационным помехам, искажению телевизионных сигналов.
  • Затраты на размещение достаточно высокие из-за дорогой аренды земли. При использовании большого количества ветровых электростанций, этот фактор приобретает важное значение в расчетах себестоимости электроэнергии.

Рекомендуем статьи по теме

Источник: electric-220.ru

Перспективы ветроэнергетики

Генерировать электричество из энергии ветра – возможно. Но сразу оговоримся: объем электрической мощности, которую можно «снять» с домашнего ветрогенератора, напрямую зависит от особенностей местности, в которой вы проживаете.

Поэтому, рассматривая автономную электростанцию как альтернативу местным электрическим сетям, предварительно изучите данные статистики по среднегодовой скорости ветра в своем регионе. Определить перспективность строительства автономной системы помогут таблицы интенсивности ветра, используемые при строительстве ветроэлектростанций (их можно найти с помощью любой поисковой системы). Также сориентироваться в вопросе поможет информация о технических характеристиках существующих ветрогенераторов и личные среднесуточные замеры скорости ветра, выполненные с помощью анемометра – прибора для измерения скорости ветра.

При слабом ветре генератор может вовсе не вырабатывать электричество, при этом свою номинальную мощность устройство развивает только при значительной скорости ветра.

Мы привели пример ветрогенератора небольшой мощности, который изготовлен из стандартной динамо-втулки. Он наглядно демонстрирует, что ветроэнергетика (даже на уровне хобби) имеет вполне реальные перспективы.

В целом, планируя строительство домашней ветроустановки, не следует ставить перед ней нереальных задач. Но если все сделать правильно – собрать установку, оснащенную аккумуляторами, контроллером и инвертором, то можно получить вполне удовлетворительные результаты (особенно, если ваш участок расположен вдали от централизованных электрических сетей). А дополнив систему солнечными батареями, можно получать энергию даже при полном отсутствии ветра.

Из чего состоит ветровая электростанция

Сам по себе ветрогенератор (независимо от мощности и других технических характеристик) никогда не сможет обеспечить бесперебойное питание подключенных к нему электроприборов. Скорость ветра – неравномерна. Как следствие, объем мощности, вырабатываемой ветрогенератором в течение суток, может очень сильно меняться (временами ветряк, и вовсе, останавливается). Поэтому классическая схема ветроэлектростанции, которая сможет обеспечивать питание потребителей даже в тихую и безветренную погоду, должна иметь следующий вид:

Где:

  • ветрогенератор (ВГ) – установка, преобразующая энергию ветра в электричество (состоит из рабочего винта и генератора переменного тока);
  • контроллер – устройство, которое преобразует переменный ток, поступающий от генератора, в ток постоянный, необходимый для правильной зарядки аккумулятора (еще одна функция контроллера – регулировка оборотов ВГ, но о ней поговорим чуть позже);
  • аккумуляторная батарея – позволяет накапливать электроэнергию во время работы ветряка и отдавать ее потребителям, когда ВГ перестает вырабатывать электричество; 
  • инвертор – устройство, которое служит для преобразования постоянного тока напряжением 12В (поступающего в сеть от АБ) в бытовой ток – 220В, обладающий заданной частотой.

Учитывая, что ветрогенератор является ключевым элементом электростанции, параметры, по которым следует его выбирать, мы рассмотрим в первую очередь.

Стартовая скорость ветра и момент страгивания ветряка

В регионах, где штормовые воздушные потоки – большая редкость, основной задачей является выбор ветрогенератора, способного вырабатывать электричество даже при сравнительно слабом ветре (4…5 м/с). Способность установки начинать вращение при небольшом ветре характеризуется величиной его стартовой скорости.

Стартовая скорость напрямую зависит от стартового момента (момента страгивания) ветряка – усилие, которое необходимо приложить на рабочий винт ветрогенератора, чтобы он начал свое вращение. Чем меньше стартовая скорость ветра, тем больше дней в году генератор будет радовать вас альтернативной энергией. Большинство ветрогенераторов, которые используются в домашних условиях, имеют стартовую скорость – 2…3 м/с.

При этом есть отдельная разновидность устройств (с парусным винтом), которые очень чувствительны к движению воздуха.

Они стартуют при значительно меньших скоростях ветра (от 0,2 м/с), но обладают крайне ненадежной конструкцией. Поэтому перспективы их использования мы рассматривать не будем.

Стартовую скорость не следует путать с рабочей и номинальной скоростью, поскольку не всегда при минимальных оборотах ротора генератор способен давать ток, достаточный для зарядки аккумулятора.

Рабочая скорость

Для того чтобы генератор не вращался «вхолостую» (например, при небольшой скорости ветра), его рабочие характеристики должны соответствовать погодным условиям, которые преобладают в вашей местности.

Скорость ветра, при которой ветрогенератор начинает давать ток на нагрузку – это минимальная рабочая скорость. Номинальная (расчетная) скорость ветра – скорость, при которой силовая установка выходит на свою номинальную мощность.

Основные разновидности ветрогенераторов

Наиболее популярны сегодня классические быстроходные ветрогенераторы с горизонтальной осью вращения и тремя лопастями.

Быстроходными считаются ветряки с минимальным количеством лопастей: 2, 3 или, вовсе, с одной (оснащенной противовесом). При сильном ветре такие генераторы очень быстро вращаются и при этом сильно шумят. Особенно это касается однолопастных устройств. Несмотря на то, что проблема шума может показаться незначительной, относиться к ней следует очень серьезно.

Форумчанин представил описание брендового быстроходного ветрогенератора, обороты которого (при скорости ветра в 10 м/с) приближаются к показателю 400 об/мин. Из него можно сделать вывод: располагая ветрогенератор вблизи жилых помещений, целесообразно рассмотреть вариант с тихоходным ВГ (если, конечно, не хотите, чтобы доброжелательные соседи однажды превратились в ваших закоренелых врагов). Такие генераторы ввиду своих аэродинамических особенностей даже при сильном ветре не развивают больших оборотов. К тому же, при сравнительно одинаковой мощности диаметр лопастей у тихоходного ветряка всегда меньше, чем у быстроходного устройства. Это делает проще и монтаж, и эксплуатацию установки.

Горизонтальный тихоходный ветряк – это установка, в конструкции которой имеется более трех лопастей, а показатель быстроходности (Z) соответствует значению Z ≤ 5. Где Z – отношение окружной (концевой) скорости лопастей ветряка к скорости ветра.

Число лопастей Показатель быстроходности, Z
1 9
2 7
3 5
6 3
12 1.2

На практике характеристики тихоходного ветряка соответствуют следующим параметрам:

Дополнительным преимуществом тихоходной установки является низкая скорость страгивания. Благодаря высокому крутящему моменту, который лопасти передают на рабочий винт генератора, установка стартует даже при небольшом ветре. Высокий момент образуется за счет большей площади лопастей (в сравнении с быстроходными ветряками).

Из-за большого количества лопастей во время работы перед винтом тихоходного генератора образуется воздушная подушка (ветер не успевает проходить через лопасти). Эта особенность оказывает негативное влияние на производительность установки, и из нее вытекают основные недостатки устройства.

К основным недостаткам тихоходного ветряка можно отнести сравнительно низкий КИЭВ и высокую парусность (которая в штормовую погоду может привести к фатальным для установки последствиям). При этом тихоходные ветряки оснащаются генераторами с увеличенным диаметр ротора, а иногда – дополнительными мультипликаторами, которые облегчают запуск и вращение силовой установки. Перечисленные усовершенствования позволяют увеличить линейную скорость ротора и «снять» с генератора больше мощности при небольших оборотах. Такая конструкция генератора значительно увеличивает стоимость всей установки.

Что касается быстроходных генераторов горизонтального типа: благодаря своей простоте и относительной дешевизне эти устройства получили достаточно широкое распространение. И если в конструкции такой установки реализована защита от бури (например, механизм складывания хвоста при сильном ветре), то единственным неудобством во время ее эксплуатации может стать сильный шум.

Тихоходные горизонтальные ветрогенераторы гораздо реже используются на территории частных домовладений. Во многом это связано с характерными особенностями подобных установок.

На нашем форуме не так уж и много сообщений, говорящих в пользу вертикальных ветрогенераторов. Некоторые сетуют на то, что их конструкция слишком громоздка, других не устраивает низкая производительность устройств (КИЭВ), многие жалуются на недостаточную способность вертикальных установок к самозапуску и т. д.

Самыми непроизводительными считаются роторы «Савониуса». Их КИЭВ едва ли достигает значения – 0.2.

В то время как средний КИЭВ роторов с аэродинамическими крыльями (роторы «Дарье») равен 0,4 (что совпадает со средним значением КИЭВ горизонтальных ветряков). Роторы Дарье наиболее популярны среди вертикальных установок, используемых в ветроэнергетике.

Несмотря на перечисленные недостатки, если ветрогенератор получил определенное распространение, то есть у него и свои преимущества. У моделей с вертикальной осью вращения они следующие:

  • при любом направлении ветра лопасти вертикальных установок находятся в рабочем положении;
  • просты в обслуживании, так как устанавливаются на небольшой высоте;
  • во время работы не создают больших вибраций, а, следовательно, не производят сильного шума;
  • просты в изготовлении.

Диаметр установки, о которой идет речь – 1,2 м, высота – 1 м. Изготовлена она по типу ортогонального Н – ротора Дарье.

Как видим, вертикальная конструкция ветрогенератора вполне имеет право на жизнь. Выбирая подобную установку, очень важно учесть ее производительность, а главное – максимальную скорость ветра, характерную для вашей местности. Ведь вертикальный ветряк практически не имеет механической защиты от бури.

Выбор ветрогенератора по характеристикам мощности

Выбирая ветрогенератор, который развивает номинальную мощность (предположим – 800 Вт/ч) при скорости ветра 8 м/с, не стоит рассчитывать на то, что при ветре 4 м/с установка будет стабильно выдавать 400 Вт/ч.

Ниже приведена зависимость мощности от ометаемой площади рабочего винта и скорости ветра.

Диаметр ветроколеса, м Мощность, кВт,  при скорости ветра, м/с
4 5 6 7 8 9 10
2 0,042 0,083 0,145 0,23 0,345 0,345 0,345
4 0,17 0,33 0,58 0,92 1,38 1,38 1.38
8 0,69 1,34 2,32 3,7 5,5 5,5 5,5
12 1,55 3.03 5,25 8,25 12,4 12,4 12,4
18 3,48 6,6 11,8 18,6 27,8 39,5 54.6
30 9,6 18,9 32,6 51,6 77,3 110,1 151,1

График мощности ветрогенератора изначально учитывает КПД установки, который выражается в коэффициенте использования энергии ветра (КИЭВ). Средний КИЭВ современных электроустановок находится в пределах – от 0,3 до 0,4. Исследуя график мощности, следует рассматривать не сколько номинальные характеристики устройства (их можно получить только при ветре 9–10 м/с), сколько показатели, характерные для среднегодовых значений ветра именно в вашей местности (например, 4–5 м/с). Только так можно правильно оценить потенциал того или иного ветрогенератора.

Следовательно, технические характеристики ветрогенератора следует соотносить не только с собственными потребностями в электричестве, но и с неизбежными потерями, возникающими во время работы альтернативной электростанции. Необходимо брать во внимание характеристики преобразователей тока, потери на сопротивление проводников (особенно, если генератор расположен на большом расстоянии от конечных потребителей) и т. д.

Источник: www.forumhouse.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.