Нефтяные пятна в океане


И. А. Немировская
«Природа» №3, 2008

Без углеводородных соединений современную жизнь представить себе практически невозможно. Это топливо, освещение, транспорт, но это и аварийные разливы, загубленные пляжи, уничтоженные птицы и животные. Проблема загрязнения морских сред не теряет своей актуальности на протяжении многих лет, даже несмотря на энергетические и экономические кризисы. Пока не прекратится транспортировка нефти по морю и подводным путепроводам, пока будет проводиться разработка морских нефтегазовых месторождений, аварии неизбежны (хотя их количество в последнее время значительно уменьшилось).

Для разработки мер по борьбе с загрязнением Мирового океана нефтепродуктами необходимо определить их источники, физико-химические и механические свойства, пространственное распространение и глубину проникновения. До сих пор не систематизированы результаты наблюдений за токсичностью загрязняющих веществ и длительностью их воздействия на физико-химические свойства морской воды.


Кроме того, необходимо учитывать, что распространение антропогенных углеводородов происходит на существующем в природе устойчивом биогеохимическом фоне. Напомним, что фитопланктон ежегодно синтезирует в океане 12 млн т углеводородов, а по последним данным Национального Исследовательского Совета США (NRS), количество антропогенных углеводородов, поступающих из всех источников, составляет 1,3 млн т в год, при возможном интервале от 0,47 до 8,4 млн т в год [1]. Без изучения фоновых углеводородных концентраций невозможно выделить их антропогенную составляющую. Если для ксенобиотиков, таких как пестициды, эти концентрации равны нулю, то для нефтяных углеводородов дело обстоит сложнее. При определении загрязненности ими морских вод необходимо знать их природные доантропогенные уровни. Особенно важны исследования геохимических барьерных зон, где наиболее интенсивно идут процессы рассеивания и концентрирования. Определение современного биогенного фона и принципа разделения естественной и антропогенной составляющих становится важнейшей задачей как при мониторинговых исследованиях, так и при определении экологического состояния отдельных морских акваторий.

Миграционные формы нефтяных углеводородов

Нефть и нефтепродукты, попадающие в водную среду естественных водоемов, очень скоро перестают существовать как исходные субстраты.


nbsp;море нефть находится в различных миграционных формах: поверхностных пленках (сликах): эмульсиях (типа «нефть в воде» и «вода в нефти»); нефтяных агрегатах и комочках; в растворенной форме; сорбированной взвесями и донными осадками; аккумулированной водными организмами. Количественное соотношение этих форм нахождения нефти в море определяется множеством факторов и зависит как от состава и свойств самой нефти, так и условий ее поступления в водоем и его гидрологических особенностей.

Нефтяные слики — первоначальная форма, которая образуется при аварийных разливах и распаде нефтеводяных эмульсий. Разливы — наиболее сложные и динамичные явления распределения примесей в море. Для их количественного описания разработаны многочисленные методы и математические модели, но все они весьма условны. Каждый разлив по-своему уникален и неповторим из-за практически бесконечного набора природных и антропогенных факторов.

В первые часы существования пленок преобладают физико-химические процессы — испарение и растворение. Затем нефть начинает разлагаться под действием микроорганизмов. Наши исследования показали, что образование равномерных пленок определяется содержанием высокомолекулярных соединений (смол и асфальтенов), которые слабо трансформируются под воздействием внешних факторов [3]. При содержании асфальтенов более 1% нефть плохо растекается по морской поверхности.

Нефть, как и поверхностная вода, движется со скоростью, составляющей несколько процентов от скорости ветра. По приблизительным оценкам, скорость перемещения нефтяных пленок составляет 60% от скорости течения и 2–4% от скорости ветра. Так, под влиянием Канарского течения слики от северо-западного побережья Африки дрейфуют в западном направлении, уменьшаясь в размерах, и в восточных районах Атлантики они встречаются чаще, чем в западных.


На сегодняшний день площадь покрытия поверхности океана пленками нефтепродуктов меньше частоты их обнаружения и в среднем не превышает 1%. Их распространение совпадает с трассами морского судоходства и особенно с маршрутами танкерных перевозок. Для Северной Атлантики количество нефтяных углеводородов в пленках оценивается в 38–46 тыс. т, а для северной части Тихого океана — около 7 тыс. т [2]. «Танкерная» нагрузка на Атлантический океан и его моря составляет 38% всех морских перевозок нефти, в то время как в Индийском и Тихом океанах — соответственно 34 и 28%.

При понижении температуры из нефти испаряется значительно меньше углеводородов. Если в условиях умеренного климата большинство легких углеводородов улетучивается через 1–3 дня, то в море Бофорта (Северный Ледовитый океан) при разливе нефти из танкера «Exxon Valdez» за это же время испарилось лишь 20% от общего количества [4]. В отличие от разливов в районах с умеренным климатом, естественная очистка после выбросов нефти в Арктике может длиться не годы, а десятилетия.


Агрегаты — одна из самых распространенных форм нефтяного загрязнения. При перевозке в танкерах и длительном испарении вязкость нефти увеличивается настолько, что формируются смоляные комки или агрегаты. Такие образования, сорбируя взвешенные минеральные и органические частицы, постепенно уплотняются до весьма твердых комочков и шаров. При балластировке и очистке танков они попадают в море.

Суммарный вес нефтяных агрегатов на всей акватории Мирового океана составляет не менее 0,5 млн т [2]. Их содержание на морской поверхности в различных акваториях варьирует в широких пределах: от 0,001 до 2270 мг/м2. К наиболее загрязненным районам относится Северная Атлантика между Гибралтаром и Азорскими о-вами. Максимальные концентрации нефтяных агрегатов тяготеют к таким судоходным районам, как Саргассово и Средиземное моря. Однако в последние годы наметилось устойчивое уменьшение их концентраций в открытых водах Средиземного моря, где среднее содержание агрегатов составило 37 мкг/м2 в 1969 году, 9,7 мкг/м2 в 1974 году и 1,2 мкг/м2 в 1987 году.

Индийский и Тихий океаны загрязнены в меньшей степени, мы не встречали смоляных комков и в водах, омывающих Антарктиду.

В Тихом океане присутствие нефтяных комков и агрегатов также связано с танкерными перевозками, но не в меньшей степени зависит от основных течений, которые переносят их далеко за пределы морских путей.


nbsp;районе Куросио, Южно- и Восточно-Китайском морях их скопление обусловлено муссонными течениями. Причем в северо-западных и западных районах чаще встречаются свежие сгустки, а на юге и юго-востоке — выветренные. Нефтяные агрегаты выносятся из динамически активных зон и накапливаются в относительно спокойных. В стержневой полосе Гольфстрима, по нашим данным, их содержание значительно ниже (0,03 мг/м2), чем на периферии (11,6 мг/м2).

Распространение нефтяных агрегатов зависит и от донного рельефа. Они скапливаются на дне в трещинах песчаника, образуя вытянутые полосы, перемещаются придонными орбитальными волновыми движениями. Накопление смоляных агрегатов на глубинах от уреза воды до 6–7 м совпадает с зоной максимальной деформации волн.

Наиболее загрязнены морские берега заливов и бухт. Особенно это относится к внутренним морям с интенсивным судоходством и развитой прибрежной промышленностью. Нередко загрязнение пляжей связано не только с морскими перевозками, но и с добычей нефти и газа на морском шельфе или с природными поступлениями из донных осадков. В проливе Санта-Барбара (Калифорния) на участке протяженностью около 1,5 км ежедневно высачивается 10–15 т нефти. Здесь обнаружены полужидкие нефтяные комки и их прослойки в вертикальном разрезе донных осадков до 2 м.


В зоне пляжа на побережье Ливии встречаются участки, где на 1 м2 приходится несколько десятков килограммов агрегатов. В восточной части Средиземного моря на побережье Израиля также установлен высокий уровень накопления нефтепродуктов — 3–5 кг/год комков на 1 м береговой линии. Принято, что при концентрации комков больше 100 г на погонный метр пляж не годится для рекреации (табл. 1). Ежегодное поступление нефтепродуктов в Средиземное море оценивается в 880 тыс. т, из которых 180 тыс. составляют смоляные агрегаты на пляжах, а 9 тыс. — плавает в море [2].

Морские течения и атмосферная циркуляция обуславливают перемешивание и перемещение нефтепродуктов по всей акватории моря, что также приводит к загрязнению его шельфа и берегов. Обследование побережий Азовского, Черного, Каспийского и Баренцева морей выявило их значительную загрязненность. Содержание нефтепродуктов в некоторых участках Каспия не только сопоставимо, но даже превышает их концентрацию в таком неблагополучном регионе Мирового океана, как Средиземное море.

Особенно крупное единовременное поступление нефтепродуктов происходит в прибрежных районах, где по статистике случается большинство аварий (табл. 2). Наши исследования в 1982 году после аварии танкера «Globe Assimi» (когда в Балтийское море вылилось более 16 тыс. т мазута) показали, что из-за многократных штормовых выбросов толща пляжных отложений приобрела вид пирога с прослойками мазута от 1–2 мм до 10–20 см.


ньше всего были загрязнены абразионные, сильно разрушаемые и умеренно размываемые участки. Там мазут встречался лишь в поверхностном слое пляжей (0–5 см, реже 0–10 см). Остальная его часть под влиянием вдольбереговых и ветровых течений переносилась севернее, на аккумулятивные участки и в зону активной волновой деятельности. Очистка побережья закончилась вывозом с пляжа песчано-мазутной смеси.

В ноябре 2007 года произошла авария танкера в Керченском проливе. В море попало 2 тыс. т мазута. Собрали только 103 м2 мазутно-водяной смеси. Большая же часть мазута оказалась на берегу и опустилась на дно. И также единственным средством борьбы с ним стал вывоз с пляжей загрязненного песка. Даже через 25 лет не оказалось более эффективных средств борьбы с нефтяными разливами! Нефтяные агрегаты, находящиеся в толще осадков, дольше сохраняют свою токсичность, нежели комки, формирующиеся в субаэральных условиях. При выходе к линии уреза воды в загрязненных нефтепродуктами осадках отмечается уменьшение численности рачков-бокоплавов. Прослойки, состоящие из смеси мазута и песка, при разрыхлении даже в течение года приводят к образованию слика на поверхности воды. Глубина захоронения остатков нефти определяется волновой энергией, конфигурацией берега и видом осадка.


nbsp;участкам с обрывистыми берегами из-за волнового отражения нефть не может приблизиться, и побережье практически не загрязняется. Механическое дробление агрегатов не играет существенной роли в их деструкции. Как высоковязкие «гудроновые» агрегаты, так и комочки «шоколадного мусса» выдерживают сильные динамические нагрузки, возникающие при волнении моря. В течение долгого времени (иногда и более 10 лет) не наблюдается никакого другого механизма самоочищения морской среды, кроме выбрасывания части агрегатов на побережье. В Арктике через восемь лет после разлива нефти из танкера Exxon Valdez встречались нефтяные комки [5].

Устойчивость смоляных агрегатов необходимо учитывать при разработке средств, используемых для борьбы с последствиями нефтяных разливов. Нужно пытаться найти методы, преобразующие агрегаты и комки в миграционные формы, наименее вредные для водоемов и водных организмов.

Растворенные углеводороды. В районах с постоянными нефтяными поступлениями или после аварийных разливов одновременно с образованием пленок происходит и растворение углеводородов.

Большую часть нефтяных углеводородов составляют алканы (парафины), нафтеновые и ароматические соединения. Алканы содержат до 60 атомов углерода. Они сравнительно малотоксичны и легко поддаются биохимическому разложению. Ароматические соединения могут составлять до 10% от сырой нефти. В их состав входят летучие соединения (бензол, толуол, ксилол: нафталины и полициклические ароматические углеводороды), обладающие канцерогенными и мутагенными свойствами.


Растворимость углеводородов снижается с увеличением их молекулярного веса. Для алканов при 25°C она уменьшается от 1,3·10–2 мкг/л (для н17) и до 7,57·10–5 мкг/л (для н-C35). Растворимость полиаренов уменьшается на шесть порядков от фенантрена (три бензольных кольца) до бенз[а]пирена (пять бензольных колец). Низкомолекулярные ароматические соединения (особенно такие, как бензол, нафталин) могут довольно легко переходить в водную фазу (или испаряться) и впоследствии образовывать коллоиды.

Даже в прибрежных районах российских морей, наиболее подверженных загрязнению, концентрации растворенных углеводородов, превышающие 50 мкг/л (ПДК — предельно допустимая концентрация — для нефтяных алифатических углеводородов) встречаются довольно редко. В то же время в отдельных случаях, по данным Роскомгидромета, фиксировались значения >1000 мкг/л (Бухта Золотой Рог в Японском море; Таганрогский залив в Азовском море). Скорее всего, данные пробы отбирались непосредственно в портовых акваториях.

Распределение нефтяных углеводородов по акватории

Большое влияние на распределение углеводородов в водной толще оказывают гидродинамические условия района исследования.


nbsp;частности, в Балтийском море — это приток соленых вод Северного моря и стратификация водной толщи. В зависимости от направления ветра и различий между соленостью и температурой воды концентрирование углеводородов происходит либо в поверхностном, либо в придонном слоях. Однако в периоды вспышек цветения планктона за счет первичной продукции, а в прибрежных районах за счет поступления терригенных компонентов их содержание существенно менялось.

Распределение углеводородов характеризуется большой пространственной неоднородностью, изменчивостью во времени и ярко выраженными сезонными вариациями концентраций.

Районы аварийных разливов. По мнению некоторых исследователей, при разливах более 1 тыс. т время существования нефтяных углеводородов под поверхностной пленкой не превышает нескольких часов. Однако после разлива мазута с танкера «Globe Assimi» в районе Клайпеды мы наблюдали высокое загрязнение толщи воды на протяжении нескольких недель. На отдельных станциях содержание растворенных углеводородов достигало 1270–2310 мкг/л (при фоне 50–100 мкг/л). Лишь через 11 мес. после аварии концентрации алифатических углеводородов в воде приблизились к доаварийному фоновому уровню. Наиболее высокое их содержание отмечалось в районах эксплуатации судов, т. е. происходило дальнейшее загрязнение данной акватории. Близкие результаты были получены в Северном море, где содержание углеводородов в районе разливов возрастало с 1,4–5,4 мкг/л до 100–4295 мкг/л. А разлив нефти в прибрежных водах Бразилии с теплым климатом ощущался всего три месяца.

Фоновые акватории. Мы проводили исследования практически во всех районах Мирового океана — от Арктики до Антарктики. Как правило, это были попутные работы, и пробы отбирались с поверхности по ходу движения судна. Полученные нами данные показали, что в открытых водах океанов (и даже морей) средние концентрации углеводородов довольно стабильны. В Атлантическом (за исключением Саргассова моря), Тихом и Индийском океанах концентрации алифатических углеводородов изменялись в сравнительно узком интервале: 6–13 мкг/л. По маршруту научно-экспедиционного судна «Академик Федоров» Северное море—Антарктида лишь на одной из 142 станций их содержание было выше 50 мкг/л. Самые низкие концентрации алифатических углеводородов установлены в Экваториальной Атлантике и в Южном океане (при движении судна от Кейптауна к Антарктиде): 4–6 мкг/л, т. е. в акваториях, наиболее удаленных от судоходных зон и человеческой деятельности. Однако и в районе Антарктиды уже не раз происходили аварийные разливы нефти. Появление туристических судов, обеспечение полярных исследовательских станций способствуют повышению уровня углеводородов в антарктических водах. Максимальная концентрация (41 мкг/л) у берегов Восточной Антарктиды оказалась в районе ледового барьера, где происходила разгрузка оборудования с «Академика Федорова» на станцию Новолазаревская. Кроме того, повышение содержания углеводородов в поверхностных водах как в Южном, так и в Северном Ледовитом океане фиксировалось в прикромочной полосе льдов [6]. Это обусловлено увеличением первичной продукции на границе вода—лед. Процесс фотосинтеза здесь возрастает настолько, что его можно назвать взрывным.

В поверхностных водах существуют зоны мелко- и крупномасштабных флуктуации, превышающие фоновые значения более чем в пять-шесть раз. Это наблюдается во многих морских акваториях, включая как открытые океанские воды (Саргассово море) и окраинные моря (Норвежское море), так и внутренние моря (Балтийское, Черное).

На разрезе Северное море — северная часть Баренцева моря на соседних станциях содержание углеводородов изменялось почти в три раза. Максимальная концентрация — 92 мкг/л — установлена не в районе нефтяных вышек (32 мкг/л), а в области скопления рыболовных судов в восточной части Норвежского моря, в акватории Скандинавского побережья (о. Вестеролен) на апвеллинге континентального склона (область поднятия глубинных вод). Среднее же содержание по всему разрезу — 24 мкг/л. В этом районе определена максимальная концентрация растворенного органического углерода — 3–27 мкгС/л, при средней — 2,28 мкгС/л.

Пограничные зоны. Еще В.И. Вернадский считал, что большая часть биогеохимической активности океана сосредоточена в пограничных зонах: между океаном и сушей, океаном и атмосферой, водой и дном; а за их пределами основная масса вод океана (около 2/3 его объема) в биогеохимическом отношении инертна. Значительные изменения свойств углеводородов происходят именно в пограничных зонах [3].

Содержание углеводородов в поверхностном микрослое (пограничной зоне вода—атмосфера, толщиной 200–300 мкм) значительно превышает их концентрации в поверхностных водах. Это обусловлено как структурными особенностями молекул воды, так и малой растворимостью гидрофобных углеводородов. Фактор обогащения углеводородами поверхностного микрослоя в отдельных случаях может достигать 20–30, а обычное его значение в морской воде не превышает 10–15. Содержание углеводородов в поверхностном микрослое зависит от перемешивания воды. При силе ветра более 3-х баллов оно резко падает. Поверхностный микрослой образуется как в прибрежных, так и в открытых океанских водах. По маршруту Средиземное море (Марсель) — Красное море — Аденский залив — Индийский океан (о. Реюньон) при скорости ветра, не превышающей 5 м/с, он покрывал от 20 до 80% морской поверхности.

Но и релаксационные процессы проходят в этом слое быстрее, чем в поверхностных водах. Скорость разложения органических соединений здесь выше, чем в поверхностных водах. Свободный доступ кислорода, постоянный приток биогенных элементов, взвешенных и растворенных веществ, большая численность и разнообразие бактерий создают экологический фон, наиболее благоприятный для окисления органических соединений. Антропогенные углеводороды, попадающие в морскую воду, разрушаются микроорганизмами с максимальной скоростью именно в поверхностном микрослое. Здесь же наиболее интенсивно происходит и их испарение.

Другой геохимический барьер, где происходит резкое изменение концентрации и состава углеводородов, — область смешения речных вод с морскими. А.П. Лисицын показал, что эта область (маргинальный фильтр) состоит из трех основных частей: гравитационной, физико-химической и биологической [7]. В гравитационной зоне из-за подпруживания речных вод морскими происходит осаждение песчано-алевритовых фракций. Она характеризуется высокой мутностью вод и затрудненным фотосинтезом. В физико-химической зоне происходит захват коллоидов и растворенных соединений (флоккуляция и коагуляция). После осаждения различных соединений вода просветляется, развивается фитопланктон и возникает следующая — биологическая зона (ассимиляция и трансформация растворенных веществ).

По нашим данным, в области маргинального фильтра может осаждаться более 80% алифатических углеводородов (табл. 3). Наиболее подробно мы изучали содержание и состав углеводородов в барьерной зоне Северная Двина — Белое море. Характерная черта рек Арктики — повышенное содержание растворенных форм органических соединений и железа. Коричневые и бурые воды северных рек протекают по почвам тундры, богатых гумусом [7]. Северная Двина — не исключение. Она пересекает таежно-лесную, лесотундровую и тундровую зоны с подзолистыми и болотными почвами. Ее воды в устьевой области характеризуются высоким содержанием растворенного органического углерода, в среднем до 20 мг/л. «Потери» углеводородов в области маргинального фильтра минимальны (исключением был 2007 год, когда пробы отбирались во время прилива).

Состав углеводородов в самой реке характеризовался повышенным содержанием нефтяных соединений и пирогенных полиаренов. Прибрежные районы Белого моря, особенно район Двинского залива и порт Архангельск, становятся местом перегрузки, переработки, транспортировки газоконденсата, нефти и нефтепродуктов. Грузооборот нефтеналивного флота вырос с 94 600 т в 1998 году до 3 136 111 т в 2006 году. В гравитационной части маргинального фильтра происходит выпадение самых крупных частиц речной взвеси (песчаных и алевритовых), а вместе с ними высокомолекулярных терригенных углеводородов, нефтяных соединений и высокомолекулярных полиаренов.

При смешении речных вод с морскими водами под воздействием электролита (морской воды) происходит переход растворенных форм во взвешенные (сорбция-десорбция, соосаждение и др.). Тонкая часть во взвеси рек обычно преобладает над всеми остальными фракциями, и в этой части фильтра углеводороды преимущественно содержатся во взвешенной форме. Образование огромного количества сорбентов приводит к накоплению в осадках терригенного вещества. Здесь обычно работают машины, очищающие фарватер от ила. После коллоидно-сорбционной стадии с многочисленными химическими и физико-химическими превращениями мутность воды снижается. Возникают световые условия для развития фитопланктона. Вновь увеличивается содержание углеводородов во взвешенной форме, однако по составу это уже биогенные углеводороды.

Мы наблюдали изменение содержания и состава полиаренов в области маргинального фильтра в устье Эльбы. Уменьшение концентраций там произошло за счет высокомолекулярных пирогенных соединений, образующихся при сгорании топлива.

Таким образом, геохимический барьер река—море служит своеобразным фильтром, препятствующим поступлению в море антропогенных углеводородов, которые приносят реки. Подобное явление характерно также для устьевых областей Волги, Даугавы, Дуная и других рек, т. е. наблюдается вне зависимости от климатических зон.

Нефтяные углеводороды в донных осадках

Распределение углеводородов, так же как органического вещества, зависит от гранулометрического состава осадков. Илистые отложения (особенно при доминировании фракции <0,1 мм) легко поглощают органические соединения, в том числе и загрязняющие вещества. Максимальными сорбционными способностями по отношению к нефтепродуктам обладают иллит и каолинит. Природный биогенный уровень алифатических углеводородов в илистых донных осадках обычно не превышает 50 мкг/л. При концентрациях же > 100 мкг/г осадки считаются загрязненными. В области лавинной седиментации и местах массированного поступления нефтепродуктов содержание углеводородов резко увеличивается, как в пересчете на сухой осадок (>1000 мкг/г), так и в составе органического вещества (>5%).

В районах с постоянным поступлением загрязняющих веществ расчет содержания миграционных форм алифатических углеводородов (в процентах к общему количеству) показал, что на глубинах до 10 м подавляющая часть углеводородов (>90%) содержится в верхнем слое донных осадков. Основная часть нефтепродуктов поступает в водоемы с промышленными и сточными водами в виде эмульсий, при разрушении которых легкие фракции всплывают на поверхность и испаряются, а тяжелые опускаются на дно. Наиболее интенсивно этот процесс происходит в проточных водоемах. В последние годы во многих программах мониторинга нефтяного загрязнения предпочтение отдается анализу донных осадков, а не воде, которая в большей степени отражает сезонные поступления загрязняющих веществ.

При авариях более 1000 т на небольших глубинах нефтепродукты довольно быстро достигают дна. В осадках умеренного климата последствия нефтяных разливов могут прослеживаться более 9 мес. В арктических условиях нефть сохраняется значительно дольше. Даже через восемь лет после аварии «Exxon Valdez» в некоторых пробах осадков маркеры указывали на присутствие нефти из этого танкера [5].

Под действием химических и биохимических процессов происходит деградация углеводородов (особенно интенсивно в летнее время), приводящая к увеличению смолистых компонентов. Даже в районах с постоянным поступлением нефтепродуктов углеводороды в донных осадках имели нефтяной состав лишь в зимне-весенний период. В августе 2006 года, по нашим данным, в устье Волги при концентрациях алифатических углеводородов 4557 мкг/г (62,65% от Cорг) маркеры указывали на доминирование биогенных соединений. Таким образом, состав углеводородов донных осадков не соответствует составу разлитой нефти, а отражает процессы сорбции и биотрансформации при седиментации.

Дисперсия концентраций полиаренов в донных осадках в районах с постоянным поступлением загрязняющих веществ настолько велика, что средняя величина сопоставима со стандартным отклонением. Распределение полиаренов, так же как и алифатических углеводородов, в таких акваториях не зависело от гранулометрического типа осадков, и в грубодисперсных отложениях их концентрации зачастую были выше, чем в илистых. Осадки относятся к слабо загрязненным при содержании суммы кольчатых полиаренов <100 нг/г. В районах с постоянным поступлением загрязняющих веществ их концентрации в донных осадках обычно превышают 1000 нг/г. При величинах более 4000 нг/г осадки становятся токсичными. Перераспределение индивидуальных полиаренов в толще воды способствует аккумуляции в осадках высокомолекулярных, наиболее токсичных углеводородов, таких как бенз[а]пирен. Основная его часть благодаря малой растворимости сорбируется взвешенными частицами, которые и переносят его в донные осадки. Использование молекулярных маркеров позволило установить, что в отдельных районах с постоянными поступлениями загрязняющих веществ основные источники полиаренов — продукты, образующиеся при сжигании топлива, и нефтяные продукты, поступающие при аварийных разливах и промывке танкеров. Отсутствие связи между содержанием в осадках алифатических углеводородов и полиаренов свидетельствует о различных источниках, формирующих уровни этих углеводородных классов.

* * *

Суммируя приведенные данные, можно заключить, что многообразие источников нефтепродуктов не всегда позволяет однозначно трактовать генезис углеводородов, обнаруженных в различных морских объектах. Нефтяные углеводороды, попадающие в океан антропогенным путем, трансформируясь, становятся близкими по составу природным углеводородам, которые постоянно существуют в океане и образуются при естественных биогеохимических процессах. Однако биогенные углеводороды медленно синтезируются на огромных площадях, и скорость их образования соответствует скорости утилизации. Из-за сбалансированности этого процесса такие углеводороды не только не оказывают вредного воздействия на морскую среду, а наоборот, поддерживают ее стабильность.

Антропогенные углеводороды поступают в короткий период времени в определенные районы, что неизбежно приводит к негативным экологическим последствиям. Особенно опасны нефтяные разливы в арктических морях и при наличии снежно-ледяного покрова.

Используя данные по содержанию алифатических углеводородов в различных миграционных формах, мы попытались оценить величины их потоков и массу в океане. Балансовые расчеты проводились на основе среднего содержания алифатических углеводородов в различных морских объектах и в составе органического вещества с учетом массы органического углерода в океане [10]. При ежегодном поступлении нефтяных алифатических углеводородов с суши (прибрежная продукция, реки, атмосфера и др.) — 1,4·1012 г — и от морских источников — 0,6·1012 г — их поток составляет соответственно 33 и 4,2%. Если в целом для океана в общем балансе нефтяные углеводороды пока не играют существенной роли, то в прибрежно-эстуарных зонах их поток соизмерим с речным стоком. Основная масса антропогенных углеводородов концентрируется в донных осадках в области маргинальных фильтров и не попадает в открытые морские воды.

Литература:

  1. Oil in the sea III: Inputs, fates and effects. Report 2002 by the National Research Council (NRS). Washington, 2002.
  2. ITOPF (International Tanker Owners Pollution Federation Limited) 2007/2008. Handbook 2007/2008.
  3. Немировская И.А. Углеводороды в океане: снег—лед—вода—взвесь—донные осадки. М., 2004.
  4. Owens E.D., Mayseth Martin С.А., Lamarchr A., Brown J. // Mar. Pollut. Bull. 2002. V. 44. P. 770–780.
  5. Page D.S., Boehm P.D., Douglas G.S. et al. // Mar. Pollut. Bull. 1999. V. 38. №4. P. 247–260.
  6. Немировская И.А. Углеводороды снежно-ледяного покрова высокоширотных акваторий // Природа. 2003. №2. С. 62–71.
  7. Лисицын А.П. // Геология и геофизика. 2004. Т. 45. №1. С. 15–48.
  8. Dai M., Martin J.M., Cauved G. // Mar. Chem. 1995. V. 51. P. 159–175.
  9. Ferandes M.B., Sicre M.A. // Organic Geochemistry. 2000. V. 31. P. 363–374.
  10. Романкевич Е.А., Ветров A.A. // Геохимия. 1997. №9. C. 945–952.

Источник: elementy.ru

Трагедия в Мексиканском заливе показала, как человек своими руками может в течение нескольких недель уничтожить природу с помощью природы. Пока ВР экстренно ищет деньги на восстановление акватории Мексиканского залива, а власти США решают, что делать с бурением на шельфе, мы предлагаем вспомнить 10 крупнейших разливов черного золота на воде в истории человечества.

1.В 1978 году танкер Amoco Cadiz сель на мель неподалеку от побережья Бретани (Франция). Из-за штормовой погоды спасательную операцию провести было невозможно. На тот момент эта авария была крупнейшей экологической катастрофой в истории Европы. Подсчитано, что погибли 20 тыс. птиц. В спасательных работах принимали участие более 7 тыс. человек. В воду вылилось 223 тысячи тонны нефти, образовав пятно размером в две тысячи квадратных километров. Нефть распространилась также на 360 километров побережья Франции. По мнению некоторых ученых, экологическое равновесие в этом регионе не восстановилось до сих пор.

2. В 1979 году произошла крупнейшая в истории авария на мексиканской нефтяной платформе Ixtoc I. В результате, в Мексиканский залив вылилось до 460 тыс. тонн сырой нефти. Ликвидация последствий аварии заняла почти год. Любопытно, что впервые в истории были организованы специальные рейсы по эвакуации морских черепах из зоны бедствия. Утечку остановили лишь через девять месяцев, за это время в Мексиканский залив попало 460 тыс. тонн нефти. Общая сумма ущерба оценивается в $1,5 млрд.

Нефтяные пятна в океане

3. Также в 1979 году произошел крупнейший в истории разлив нефти, вызванный столкновением танкеров. Тогда в Карибском море столкнулись два танкера: Atlantic Empress и Aegean Captain. В результате аварии в море попало почти 290 тыс. тонн нефти. Один из танкеров затонул. По счастливому стечению обстоятельств, катастрофа произошла в открытом море, и ни одно побережье (ближайшим был остров Тринидад) не пострадало.

Нефтяные пятна в океане

4. В марте 1989 года нефтяной танкер «Экссон Валдез» американской компании Exxon сел на мель в заливе Принц Уильямс у побережья Аляски. Через образовавшуюся в судне пробоину в океан вылилось свыше 48 тысяч тонн нефти. В результате пострадало свыше 2,5 тысяч квадратных километров морской акватории, под угрозой исчезновения оказались 28 видов животных. Район аварии был труднодоступным (туда можно добраться только по морю или на вертолётах) что сделало невозможным быструю реакцию служб и спасателей. В результате катастрофы около 10,8 миллионов галлонов нефти (около 260 тыс. баррелей или 40,9 миллионов литров) вылилось в море образовав нефтяное пятно в 28 тысяч квадратных километров. Всего танкер перевозил 54,1 миллиона галлонов нефти. Было загрязнено нефтью около двух тысяч километров береговой линии.

5. В 1990 году Ирак захватил Кувейт. Войска антииракской коалиции, образованной 32 государствами, разбили иракскую армию и освободили Кувейт. Однако, готовясь к обороне, иракцы открыли задвижки на нефтяных терминалах и опорожнили несколько нагруженных нефтью танкеров. Этот шаг был предпринят для того, чтобы затруднить высадку десанта. До 1.5 млн. тонн нефти (различные источники приводят разные данные) вылилось в Персидский залив. Так как шли боевые действия, с последствиями катастрофы некоторое время никто не боролся. Нефть покрыла примерно 1 тыс. кв. км. поверхности залива и загрязнила около 600 км. побережий. Для того, чтобы предотвратить дальнейший разлив нефти, авиация США разбомбила несколько кувейтских нефтепроводов.

6 В январе 2000 года крупный разлив нефти произошел в Бразилии. В воды бухты Гуанабара, на берегу которой расположен Рио-де-Жанейро из трубопровода компании «Петробраз» попало свыше 1,3 миллиона литров нефти, что привело к крупнейшей за всю историю мегаполиса экологической катастрофе. По мнению биологов, природе потребуется почти четверть века, чтобы полностью восстановить экологический ущерб. Бразильские биологи сравнили масштабы экологического бедствия с последствиями войны в Персидском заливе. К счастью нефть удалось остановить. Она прошла по течению четыре срочно построенных заградительных барьера и «застряла» лишь на пятом. Часть сырья уже удалили с поверхности реки, часть разлилась по вырытым в экстренном порядке специальным отводным каналам. Оставшиеся же 80 тысяч галлонов из миллиона (4 млн. литров), попавших в водоем, рабочие вычерпывали вручную.

Нефтяные пятна в океане

7. В ноябре 2002 года у побережья Испании разломился и затонул танкер Prestige. В море попали 64 тыс. тонн мазута. На ликвидацию последствий аварии затрачено €2,5 млн. После этого случая ЕС закрыл однокорпусным танкерам доступ в свои воды. Возраст затонувшего судна 26 лет. Оно было построено в Японии и принадлежит зарегистрированной в Либерии компании, которая, в свою очередь, управляется греческой фирмой, зарегистрированной на Багамах и получившей сертификат от американской организации. Корабль был зафрахтован функционирующей в Швейцарии российской компанией, которая занимается перевозками нефти из Латвии в Сингапур. Правительство Испании подало судебный иск на $5 миллиардов к американскому мореходному бюро за ту роль, которая его невнимательность сыграла в катастрофе танкера «Престиж» у берегов Галисии в ноябре прошлого года.

8. В августе 2006 года потерпел аварию танкер на Филиппинах. Тогда оказались загрязнены 300 км побережья в двух провинциях страны, 500 гектаров мангровых лесов и 60 га плантаций водорослей. Пострадал и морской резерват Таклонг, на территории которого обитали 29 видов кораллов и 144 вида рыб. В результате разлива мазута пострадали около 3 тысяч филиппинских семей. Танкер «Солар 1» (Solar 1) компании Sunshine Maritne Development Corporation, был нанят для перевозки 1800 т мазута филиппинской государственной компании «Петрон» (Petron). Местные рыбаки, которые раньше за день могли выловить до 40-50 кг рыбы, сейчас с трудом ловят до 10 кг. Для этого им приходится уходить далеко от мест распространения загрязнений. Но даже эту рыбу невозможно продать. Провинция, которая только что вышла из списка 20 беднейших регионов Филиппин, похоже, на долгие годы опять возвращается в нищету.

9. 11 ноября 2007 года шторм в Керченском проливе стал причиной беспрецедентного чрезвычайного происшествия в Азовском и Черном морях — за один день затонули четыре судна, еще шесть сели на мель, получили повреждения два танкера. Из разломившегося танкера «Волгонефть-139» в море вылилось более 2 тысяч тонн мазута, на затонувших сухогрузах находилось около 7 тысяч тонн серы. Росприроднадзор оценил экологический ущерб, причиненный в результате крушения нескольких судов в Керченском проливе, в 6,5 миллиарда рублей. Ущерб только от гибели птицы и рыбы в Керченском проливе оценивался приблизительно в 4 миллиарда рублей.

Нефтяные пятна в океане

10. 20 апреля 2010 года в 22:00 по местному времени на платформе Deepwater Horizon произошел взрыв, вызвавший сильный пожар. В результате взрыва семь человек получили ранения, четверо из них находятся в критическом состоянии, без вести пропали 11 человек. Всего на момент ЧП на буровой платформе, которая по размерам больше, чем два футбольных поля, работали 126 человек, и хранилось около 2,6 миллиона литров дизельного топлива. Производительность платформы составляла 8 тысяч баррелей в сутки. По оценкам, в Мексиканском заливе в воду выливается до 5 тысяч баррелей (около 700 тонн) нефти в сутки. Однако специалисты не исключают, что в ближайшее время эта цифра может достигнуть 50 тысяч баррелей в день из-за появления в трубе скважины дополнительных мест протечки. В начале мая 2010 года Президент США Барак Обама назвал происходящее в Мексиканском заливе «потенциально беспрецедентной экологической катастрофой». В толще вод Мексиканского залива обнаружены пятна нефти (одно пятно длиной 16 км толщиной 90 метров на глубине до 1300 метров). Нефть,возможно,будет вытекать из скважины до августа.

Источник: neftegaz.ru

Ежегодно в Мировой океан попадает более 10 млн. т нефти и до 20% его площади уже покрыты нефтяной пленкой. В первую очередь это связано с тем, что добыча нефти и газа в Мировом океане стала важнейшим компонентом нефтегазового комплекса. В 1993 году в океане добыто 850 млн. т нефти (почти 30% мировой добычи). В мире пробурено около 2500 скважин, из них 800 в США, 540 – в Юго-Восточной Азии, 400 – в Северном море, 150 – в Персидском заливе. Эти скважины пробурены на глубинах до 900 м.

Загрязнение гидросферы водным транспортом происходит по двум каналам. Во-первых, морские и речные суда загрязняют ее отходами, получаемыми в результате эксплуатационной деятельности, и, во-вторых, выбросами в случае аварий токсичных грузов, большей частью нефти и нефтепродуктов. Энергетические установки судов (в основном дизельные двигатели) постоянно загрязняют атмосферу, откуда токсичные вещества частично или почти полностью попадают в воды рек, морей и океанов.

Нефть и нефтепродукты являются главными загрязнителями водного бассейна. На танкерах, перевозящих нефть и ее производные, перед каждой очередной загрузкой, как правило, промываются емкости (танки) для удаления остатков ранее перевезенного груза. Промывочная вода, а с ней и остатки груза обычно сбрасываются за борт. Кроме того, после доставки нефтегрузов в порты назначения танкеры чаще всего направляются к пункту новой погрузки порожними. В этом случае для обеспечения надлежащей осадки и безопасности плавания танки судна наполняются балластной водой. Эта вода загрязняется нефтяными остатками, а перед погрузкой нефти и нефтепродуктов выливается в море. Из общего грузооборота мирового морского флота в настоящее время 49% падает на нефть и ее производные. Ежегодно около 6000 танкеров международных флотилий транспортируют 3 млрд. т нефти. По мере роста перевозок нефтегрузов все большее количество нефти стало попадать в океан при авариях.

Огромный ущерб океану нанесло крушение американского супертанкера «Торри Каньон» у юго-западного побережья Англии в марте 1967 года: 120 тысяч т нефти вылилось на воду и было подожжено зажигательными бомбами с самолетов. Нефть горела несколько дней. Были загрязнены пляжи и побережья Англии и Франции.

За десятилетие после катастрофы танкера «Торри Канон» в морях и океанах погибло более 750 крупных танкеров. Большинство этих крушений сопровождалось массовыми выбросами нефти и нефтепродуктов в море. В 1978 году у французских берегов снова произошла катастрофа, еще более значительная по последствиям, чем в 1967 году. Здесь в шторм разбился американский супертанкер «Амоно Кодис». Из судна вылилось более 220 тыс т нефти, покрыв площадь 3,5 тыс. кв. км. Был нанесен огромный ущерб рыболовству, рыбоводству, устричным «плантациям», всем морским обитателям этого района. На протяжении 180 км побережье покрылось черным траурным «крепом».

В 1989 году авария танкера «Валдиз» вблизи побережья Аляски стала крупнейшей экологической катастрофой подобного рода в истории США. Огромный, с полкилометра длиной, танкер сел на мель примерно в 25 милях от берега. Тогда в море вылилось около 40 тыс. т нефти. Огромное нефтяное пятно растеклось в радиусе 50 миль от места аварии, покрыв плотной пленкой пространство 80 кв. км. Были отравлены самые чистые и богатые фауной прибрежные районы Северной Америки.

Для предотвращения подобных катастроф разрабатываются двухкорпусные танкеры. При аварии, если будет поврежден один корпус, второй предотвратит попадание нефти в море.

Происходит загрязнение океана и другими видами отходов промышленности. Во все моря мира сброшено примерно 20 млрд. т мусора (1988 год). Подсчитано, что на 1 кв. км океана приходится в среднем 17 т отбросов. Зафиксировано, что за один день в Северное море было сброшено 98 тыс. т отбросов (1987 год).

Известный путешественник Тур Хейердал рассказывал, что когда он и его друзья плыли на плоту «Кон-Тики» в 1954 году, они не уставали любоваться чистотой океана, а во время плавания на папирусном судне «Ра-2» в 1969 году он и его спутники, «проснувшись утром, увидели океан настолько загрязненным, что некуда было окунуть зубную щетку. Из голубого Атлантический океан стал серо-зеленым и мутным, и повсюду плавали комки мазута величиной от булавочной головки до ломтя хлеба. В этой каше болтались пластиковые бутылки, будто мы попали в грязную гавань. Ничего подобного я не видел, когда сто одни сутки сидел в океане на бревнах «Кон-Тики». Мы воочию убедились, что люди отравляют важнейший источник жизни, могучий фильтр земного шара – Мировой океан».

До 2 млн. морских птиц и 100 тыс. морских животных, в том числе до 30 тыс. тюленей, ежегодно погибают, проглотив какие-либо пластмассовые изделия или запутавшись в обрывках сетей и тросов.

ФРГ, Бельгия, Голландия, Англия сбрасывали в Северное море ядовитые кислоты, в основном 18-20%-ную серную кислоту, тяжелые металлы с грунтом и осадками сточных вод, содержащими мышьяк и ртуть, а также углеводороды, в том числе ядовитый диоксин (1987 год). К тяжелым металлам относится ряд элементов, широко применяемых в промышленности: цинк, свинец, хром, медь, никель, кобальт, молибден и др. При попадании в организм большинство металлов очень трудно выводятся, имеют свойство постоянно накапливаться в тканях разных органов, и при превышении определенной пороговой концентрации наступает резкое отравление организма.

Три реки, впадающие в Северное море, Рейн, Маас и Эльба, ежегодно приносили 28 млн. т цинка, почти 11000 т свинца, 5600 т меди, а также 950 т мышьяка, кадмий, ртуть и 150 тыс. т нефти, 100 тыс. т фосфатов и даже радиоактивные отходы в разных количествах (данные на 1996 год). С судов ежегодно сбрасывалось 145 млн. т обычного мусора. Англия сбрасывала 5 млн. т канализационных стоков в год.

В результате добычи нефти из трубопроводов, связывающих нефтяные платформы с материком, каждый год в море вытекало около 30000 т нефтепродуктов. Последствия этого загрязнения нетрудно видеть. Целый ряд видов, которые некогда обитали в Северном море, в том числе лосось, осетр, устрицы, скаты и пикша, просто-напросто исчезли. Гибнут тюлени, другие обитатели этого моря нередко страдают от инфекционных заболеваний кожи, имеют деформированный скелет и злокачественные опухоли. Гибнет птица, питающаяся рыбой или отравившаяся морской водой. Наблюдалось цветение ядовитых водорослей, которое привело к уменьшению рыбных запасов (1988 год).

В Балтийском море в течение 1989 года погибли 17 тыс. тюленей. Проведенные исследования показали, что ткани погибших животных буквально пропитаны ртутью, которая попадала в их организм из воды. Биологи считают, что загрязнение воды привело к резкому ослаблению иммунной системы обитателей моря и их гибели от вирусных заболеваний.

Крупные разливы нефтепродуктов (тысячи тонн) происходят в Восточной Балтике один раз в 3-5 лет, мелкие (десятки тонн) – ежемесячно. Крупный разлив поражает экосистемы на акватории в несколько тысяч гектаров, мелкий – в несколько десятков гектаров. Балтийскому морю, проливу Скагеррак, Ирландскому морю угрожают выбросы иприта – химического отравляющего вещества, созданного Германией в годы Второй мировой войны и затопленного Германией, Великобританией и СССР в 40-е годы. Свои химические боеприпасы СССР топил в северных морях и на Дальнем Востоке, Великобритания – в Ирландском море.

В 1983 году вошла в силу международная Конвенция по предотвращению загрязнения морской среды. В 1984 году государства Балтийского бассейна подписали в Хельсинки Конвенцию по защите морской среды Балтийского моря. Это было первое международное соглашение на региональном уровне. В результате проведенной работы содержание нефтепродуктов в открытых водах Балтийского моря снизилось в 20 раз по сравнению с 1975 г.

В 1992 году министрами 12 государств и представителем Европейского Сообщества была подписана новая Конвенция по охране среды бассейна Балтийского моря.

Происходит загрязнение Адриатического и Средиземного морей. Только через реку По в Адриатическое море с предприятий промышленности и сельскохозяйственных ферм ежегодно попадает 30 тыс. т фосфора, 80 тыс. т азота, 60 тыс. т углеводорода, тысячи тонн свинца и хрома, 3 тыс. т цинка, 250 т мышьяка (1988 год).

Средиземному морю грозит участь превратиться в мусорную свалку, сточную яму трех континентов. Ежегодно в море попадает 60 тыс. т моющих веществ, 24 тыс. т хрома, тысячи тонн нитратов, применяемых в сельском хозяйстве. К тому же 85% вод, сбрасываемых из 120 крупных приморских городов, не очищаются (1989 год), а самоочищение (полное обновление вод) Средиземного моря осуществляется через Гибралтарский пролив за 80 лет.

Из-за загрязнений Аральское море с 1984 года полностью потеряло рыбохозяйственное значение. Его уникальная экосистема погибла.

Владельцы химического комбината «Тиссо» в городке Минамата на острове Кюсю (Япония) долгие годы сбрасывали в океан сточные воды, насыщенные ртутью. Прибрежные воды и рыба оказались отравленными, и с 50-х годов 1200 человек умерли, а 100000 получили отравление различной тяжести, в том числе психопаралитические заболевания.

Серьезную экологическую угрозу для жизни в Мировом океане и, следовательно, для человека представляет захоронение на морском дне радиоактивных отходов (РАО) и сброс в море жидких радиоактивных отходов (ЖРО). Западные страны (США, Великобритания, Франция, Германия, Италия и др.) СССР с 1946 года начали активно использовать океанские глубины для того, чтобы избавляться от РАО.

В 1959 году ВМС США затопили в 120 милях от Атлантического побережья США неудачный ядерный реактор от атомной подводной лодки. По данным «Гринпис», наша страна сбросила в море около 17 тыс. бетонных контейнеров с РАО, а также более 30 корабельных атомных реакторов.

Наиболее тяжелая обстановка сложилась в Баренцевом и Карском морях вокруг ядерного полигона на Новой Земле. Там помимо бесчисленного количества контейнеров затоплено 17 реакторов, в том числе с ядерным топливом, несколько аварийных атомных подводных лодок, а также центральный отсек атомохода «Ленин» с тремя аварийными реакторами. Тихоокеанский флот СССР захоранивал ядерные отходы (в том числе 18 реакторов) в Японском и Охотском морях, в 10 местах недалеко от берегов Сахалина и Владивостока.

США и Япония сбрасывали отходы деятельности АЭС в Японское, Охотское море и Северный ледовитый океан.

Жидкие радиоактивные отходы СССР сливал в дальневосточных морях с 1966 года по 1991 год (в основном вблизи юго-восточной части Камчатки и в Японском море). Северный флот ежегодно сбрасывал в воду 10 тыс. куб. м ЖРО.

В 1972 году была подписана Лондонская конвенция, запрещающая сброс на дно морей и океанов радиоактивных и ядовитых химических отходов. К той конвенции присоединилась и наша страна. Военные корабли, в соответствии с международным правом, в разрешении на сброс не нуждаются. В 1993 году запрещен сброс ЖРО в море.

В 1982 году 3-я Конференция ООН по морскому праву приняла конвенцию по мирному использованию Мирового океана в интересах всех стран и народов, которая содержит около тысячи международно-правовых норм, регламентирующих все основные вопросы использования ресурсов океана.

Источник: StudFiles.net

Авария «Torrey Canyon»

Это судно считалось самым крупным нефтяным танкером 1960-х. 18 марта 1967 г. «Torrey Canyon», шедший из Персидского залива, приблизился к скалистым островам Силли неподалёку от английского полуострова Корнуолл. Невыспавшийся капитан направил танкер в один из проходов Ла-Манша, но не успел повернуть, и судно напоролось на риф. Из 18 танков были разорваны 14. Нефтяное пятно разлилось по площади 225 км² и двигалось к Корнуоллу — курорту Великобритании.

27 марта танкер затонул, но в его танках ещё оставалось 80 тыс. тонн нефти. Было решено уничтожить «Torrey Canyon» и находившееся в нём горючее сырьё с помощью бомбардировки. Британские ВВС сбросили в место крушения 40 бомб, в начинку которых для усиления пламени был добавлен алюминий. Следом за бомбардировщиками истребители сбросили в огонь более 20 тыс. литров бензина. Пожар был чудовищный — нефть поджигали ракетами, напалмом и вновь бомбами. Так продолжалось несколько дней. Одновременно морские пехотинцы и солдаты очищали пляжи Корнуолла. Завершить работы удалось лишь к началу июня.

После этой аварии были приняты три международные конвенции, утверждены законы и правила, регламентирующие спасательные работы в подобных случаях. Но более всего общественность впечатлили экологические последствия катастрофы. Только на побережье Корнуолла погибло 20 тыс. кайр и 5 тыс. гагарок — 90% популяции птиц этих районов. Сосчитать численность погибших рыб, крабов, морских ежей, угрей не представлялось возможным.

Крушение «Amoco Cadiz»

Нефтяной супертанкер «Amoco Cadiz», ходивший под флагом Либерии, но принадлежавший американской компании, затонул 17 марта 1978 г. Накануне вечером он сел на мель в 5 км от побережья Франции. Причиной стали подводные скалы, которые не заметил капитан.

Крушение «Amoco Cadiz». Фото: Public Domain

С гибнувшего судна с помощью вертолётов сняли экипаж, а сам танкер раскололся на три части и затонул. В Ла-Манш вылилось 240 тыс. тонн нефти. От неё пострадало всё побережье Бретани. Последствия удручающие: морской живности было убито больше, чем когда-либо до этого. Погибли устричные плантации, десятки тысяч рыб и птиц, обитавших в прибережном регионе.

Разлив нефти в Мексиканском заливе в 1979 г.

3 июня 1979 г. на буровой установке «Sedco 135», находившейся в южной части Мексиканского залива, произошла авария. Давление в установке упало, и из месторождения хлынула нефть. Сама платформа загорелась и рухнула в море.

По подсчётам экологов, всего в воду попало 500 тыс. тонн нефти. На мексиканские пляжи было выброшено 6 тыс. тонн, на побережье Техаса — 4 тыс. тонн. 120 тыс. тонн нефти опустилось на дно Мексиканского залива.

Читайте также: Тонут в чёрном золоте. Как животных спасают из нефтяных ловушек

В итоге почти полностью были уничтожены популяции крабов и птиц. Погибло очень много морских черепах. Некоторым биологическим видам потребовались годы, чтобы восстановить численность популяции.

Разлив нефти в Мексиканском заливе в 1979 г. Фото: Public Domain

Пожар на платформе «Piper Alpha»

6 июля 1988 г. в Северном море произошла большая катастрофа. На платформе «Piper Alpha», использовавшейся для добычи нефти и газа, начался пожар, который завершился взрывом. Погибло 167 человек из 226 там находившихся. Это крупнейшая по количеству жертв катастрофа в истории добычи природных ископаемых. Застрахованные потери составили 3,4 млрд долларов. Кроме того, был нанесён огромный ущерб окружающей среде. В течение нескольких дней нефть продолжала поступать в Северное море — с тех пор оно считается одним из самых загрязнённых в мире.

Авария «Exxon Valdez»

Нефтяной танкер «Exxon Valdez» вышел из порта Валдиз на Аляске в направлении Калифорнии 23 марта 1989 г. Он был полностью загружен нефтью. Капитану накануне крепко выпил, а потому оставил рубку, передав управление третьему помощнику и матросу, которые сами нуждались в отдыхе. Вскоре после полуночи судно налетело на риф и получило серьёзную пробоину.

В океан вылилось 50 тыс. тонн нефти, загрязнению подверглись 2,5 тыс. км побережья Аляски. Авария стала причиной гибели десятков тысяч рыб, птиц и животных, обитающих как в воде, так и на суше. Даже через 8 лет после катастрофы в некоторых пробах осадков обнаруживали следы нефти из танкера «Exxon Valdez».

Крушение «MV Braer»

Утром 5 января 1993 г. у танкера «MV Braer», который следовал вдоль берегов Шотландии гружёный норвежской нефтью, отказал двигатель. Сильный ветер стал сносить судно в сторону острова Мейнленд. Экипаж был эвакуирован с помощью вертолёта, а само судно спасти не удалось. Его вынесло на скалы — в результате крушения случилась утечка нефти объёмом почти 85 тыс. тонн. Самое крупное нефтяное пятно размером в 9 миль направилось на север в сторону песчаных пляжей острова Сент-Ниньян. Пятно меньших размеров снесло к побережью Шотландии.

Катастрофа «Prestige»

Крушение нефтяного танкера «Prestige» («Престиж») считается одним из самых крупных инцидентов, нанесших ущерб экологии. Авария случилась у берегов Испании 13 ноября 2002 г. Корабль попал в сильный шторм, в корпусе образовалась пробоина длиной 35 метров. Каждые сутки из танкера в воды Атлантики вытекало не мене 1 тыс. тонн мазута.

19 ноября судно затонуло окончательно, расколовшись на две части. В океан попало свыше 70 тыс. м³ нефти. На поверхности вдоль береговой линии образовалось пятно длиной более 1 тыс. км, что нанесло местной флоре и фауне огромный ущерб.

Для Европы этот разлив нефти стал самым катастрофическим за всю историю. Ущерб оценили в 4 млрд евро, для ликвидации последствий аварии было привлечено 300 тыс. волонтёров. Позже экологи провели исследование и выяснили, что у испанских рыбаков, принимавших участие в очистке побережья, наблюдаются генетические нарушения и заболевания лёгких.

Взрыв платформы в Мексиканском заливе в 2010 г.

20 апреля 2010 г. на нефтяной платформе, принадлежащей British Petroleum и расположенной в акватории Мексиканского залива, произошёл взрыв. Погибло 11 человек. Из скважины на глубине 1,5 км в море вылилось около 5 миллионов баррелей нефти. 75 тыс. км² Мексиканского залива оказалось покрыто нефтяной плёнкой — это 5 % его площади. От загрязнения пострадали все штаты, имеющие выход к заливу — Луизиана, Флорида, Миссисипи, Алабама.

Разлив нефти угрожал 400 видам животных, в том числе китам и дельфинам. Экологи находили сотни мёртвых черепах и тысячи птиц. Также была зафиксирована вспышка смертности китообразных на севере Мексиканского залива.

Источник: aif.ru

Люди всегда стремились к воде, именно эти территории люди пытались освоить в первую очередь. Порядка шестидесяти процентов всех больших городов находятся на прибрежной зоне. Так на побережье Средиземного моря находятся государства, население которых численно равно двести пятьдесят миллионов человек. И при этом большие промышленные комплексы выбрасывают в море порядка несколько тысяч тонн всевозможных отходов, в том числе большие города туда же сливают и канализацию. Поэтому не стоит удивляться, что когда воду берут на пробу, то там находят огромное количество различных вредных микроорганизмов.

проблема загрязнения вод мирового океана

С ростом количества городов и растет количество выливаемых отбросов в Мировой океан. Даже такому большому природному ресурсу не под силу переработать столько отходов. Происходит отравление фауны и флоры как прибрежной, так и морской, упадок рыбного хозяйства.

Борются с загрязнениями города следующим образом – отходы сбрасывают подальше от берега и на большую глубину с помощью многокилометровых труб. Но это вообще ничего не решает, а лишь отсрочивает время уничтожения полностью флоры и фауны моря.

последствия загрязнения мирового океана

Один из самых главных загрязнителей вод океана является нефть. Попадает она туда всячески: при крушении нефтерудовозов; аварий на морских нефтепромыслах, при добыче нефти из морского дна. Из-за нефти гибнет рыба, а та, что выживает, имеет неприятный привкус и запах. Вымирают морские птицы, лишь в прошлом году умерло тридцать тысяч уток – морянок около Швеции из-за нефтяных пленок на поверхности воды. Нефть, плавая по морским течениям, и, приплывая к берегу, сделала непригодными для отдыха и купания многие курортные зоны.

Так Межправительственная морское общество создало соглашение, по которому нельзя сливать нефть в воду за пятьдесят километров от берега, большинство морских держав его подписало.

Кроме того постоянно происходит и радиоактивное заражение океана. Это происходит через течи в ядерных реакторах или от затонувших ядерных подводных лодок, что приводит к радиационному изменению флоры и фауны, ему в этом помогло течение и с помощью цепей питания от планктона к большой рыбе. В настоящий момент многие ядерные державы используют Мировой океан для размещения ракетно–ядерных боеголовок подлодок, производят захоронение отработанных ядерных отходов.

виды загрязнений мирового океана

Еще одна из катастроф океана — это цветение воды, связано с разрастанием водорослей. А это приводит к сокращению улова лосося. Быстрое размножение водорослей происходит из-за большого количества микроорганизмов, которые появляются в результате выброса отходов промышленностью. И напоследок разберем механизмы самоочищения вод. Их подразделяют на три вида.

  • Химические — соленая вода богата различными химическими соединениями, в которых при попадании кислорода возникают окислительные процессы, плюс облучение светом и в итоге происходит эффективное перерабатавание антропогенных токсинов. Соли возникающие в результате реакции просто оседают на дно.
  • Биологические – вся масса морских животных живущих на дне, пропускают через свои жабры всю воду прибрежной зоны и тем самым работают как фильтры, хоть и умирают тысячами.
  • Механические – когда течение замедляется, взвеси выпадают в осадок. В результате происходит конечное захоронение антропогенных веществ.

С каждым годом воды Мирового океана все чаще загрязняются отходами химической промышленности. Так была замечена тенденция увеличения количества мышьяка в океанических водах. Значительно экологический баланс подрывают тяжелые металлы свинца и цинка, никеля и кадмия, хрома и меди. Еще урон наносят всяческие пестициды, такие как эндрин, альдрин, дильдрин. Кроме того, пагубное влияние на морских жителей оказывает вещество трибутилоловохлорид, которое используется для покраски кораблей. Оно предохраняет поверхность от зарастания водорослями и ракушками. Поэтому следует все эти вещества заменить на менее токсичные, чтобы не вредить морской флоре и фауне.

Загрязнения вод Мирового океана связано не только с химической промышленностью, но и с другими сферами деятельности человека, в частности, энергетикой, автомобилестроением, металлургией и пищевой, легкой промышленностью. Не менее пагубное влияние оказывают коммунальные предприятия, области сельского хозяйства и транспорта. Самыми распространенными источниками загрязнения воды являются стоки промышленных и канализационных отходов, а также удобрения и гербициды.

Загрязнению вод способствуют отходы, возникающие вместе с торговыми и рыбацкими флотами, а также нефтеналивными танкерами. В результате деятельности человека в воду попадают такие элементы, как ртуть, вещества группы диоксинов и ПХД. Накапливаясь в организме, вредные соединения провоцируют появления серьезных заболеваний: нарушается обмен веществ, снижается иммунитет, репродуктивная система работает неполноценно, а также появляются серьезные проблемы с печенью. Более того, химические элементы способны влиять на генетику и изменять её.

Пластмассовые отходы составляют целые скопления и пятна в водах Тихого, Атлантического и Индийского океанов. Большинство мусора образуется из-за сброса отходов с густонаселенных районов побережья. Часто морские животные проглатывают пакеты и мелкие частицы пластика, путая с пищей, что приводит к их гибели.

Пластмасса распространилась так сильно, что её уже можно найти в субполярных водах. Установлено, что только в водах Тихого океана количество пластика увеличилось в 100 раз (исследования проводилось в течение последних сорока лет). Даже маленькие частицы способны изменить естественную океаническую среду. В ходе подсчетов около 90% животных, умирающих на берегу, погибают он пластикового мусора, который ошибочно принимают за пищу.

Кроме того, опасность представляет суспензия, которая образуется в результате распада пластиковых материалов. Заглатывая химические элементы, морские обитатели обрекают себя на сильные мучения и даже смерть. Не стоит забывать о том, что люди также могут употреблять в пищу рыбу, которая загрязнена отходами. В составе ее мяса присутствует большое количество свинца и ртути.

Загрязненная вода становится причиной многих заболеваний людей и животных. В результате сокращаются популяции флоры и фауны, а некоторые даже вымирают. Все это приводит к глобальным изменениям экосистем всех акваторий. В достаточной мере загрязнены все океаны. Одним из наиболее загрязненных морей является Средиземноморское. В него стекают сточные воды из 20 городов. К тому же негативную лепту вносят туристы популярных курортов Средиземноморья. Самыми грязными реками мира являются Цитарум в Индонезии, Ганг в Индии, Янзцы в Китае и Кинг Ривер в Тасмании. Среди загрязненных озер специалисты называют Великие североамериканские озера, Онондага в США и Тай в Китае.

Как следствие, происходят значительные изменения вод Мирового океана, в результате чего исчезают глобальные климатические явления, образуются мусорные острова, цветет вода в связи с размножением водорослей, повышается температура, провоцирующая глобальное потепление. Последствия данных процессов слишком серьезные и главной угрозой является постепенное сокращение выработки кислорода, а также снижение ресурсности океана. Кроме этого, в разных регионах могут наблюдаться неблагоприятное развитие событий: развитие засух в определенных областях, наводнений, цунами. Охрана Мирового океана должна быть приоритетной целью всего человечества.

Источник: ECOportal.info


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.