Каким образом живое вещество обеспечивает механизм


Живое вещество. Этот термин введен в литературу В. И. Вернадским. Под ним он понимал совокупность всех жи­вых организмов, выраженную через массу, энергию и химичес­кий состав.

Вещества неживой природы относятся к косным (напри­мер, минералы). В природе, кроме этого, довольно широко пред­ставлены биокосные вещества, образование и сложение кото­рых обусловливается живыми и косными составляющими (на­пример, почвы, воды).

Живое вещество — основа биосферы, хотя и составляет край­не незначительную ее часть. Если его выделить в чистом виде и распределить равномерно по поверхности Земли, то это будет слой около 2 см или 0,01% от массы всей биосферы. В чем же причина столь высокой химической и геологической активнос­ти живого вещества?

Прежде всего это связано с тем, что живые организмы бла­годаря биологическим катализаторам (ферментам) совершают, по выражению академика Л. С. Берга, с физико-химической точки зрения что-то невероятное. Например, они способны фиксиро­вать в своем теле молекулярный азот атмосферы при обычных для природной среды значениях температуры и давления. В про­мышленных условиях связывание атмосферного азота до амми­ака требует температуры порядка 500° С и давления 300—500 атмосфер.


В живых организмах на порядок или несколько порядков увеличиваются скорости химических реакций в процессе обме­на веществ. В. И. Вернадский в связи с этим живое вещество назвал формой чрезвычайно активированной материи.

Свойства живого вещества. К основным уникальным осо­бенностям живого вещества, обусловливающим его крайне вы­сокую преобразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свободное пространство. В. И. Вернадский назвал этовсюдностью жизни.Данное свойство дало основание В. И. Вернадскому сделать вы­вод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Способность быстрого освоения пространства связана как с интенсивным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные возможности размножения), так и со способно­стью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листь­ев растений, произрастающих на 1 га, составляет 8—10 га и бо­лее. То же относится к корневым системам.


2. Движение не только пассивное (под действием силы тя­жести, гравитационных сил и т.п.),но и активное. Например, против течения воды, силы тяжести, движения воздушных по­токов и т.п.

3. Устойчивость при жизни и быстрое разложение после смерти(включение в круговороты), сохраняя при этом высокую физи­ко-химическую активность.



4. Высокая приспособительная способность (адаптация) к раз­личным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температу­ры, близкие к значениям абсолютного нуля —273°С, микроорга­низмы встречаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых панцирях и т.п.

5. Феноменально высокая скорость протекания реакций.Онана несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скоро­сти переработки вещества организмами в процессе жизнедея­тельности. Например, гусеницы некоторых насекомых потреб­ляют за день количество пищи, которое в 100—200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дожде­вые черви (масса их тел примерно в 10 раз больше биомассы всего человечества) за 150—200 лет пропускают через свои орга­низмы весь однометровый слой почвы. Такие же явления имеют место в донных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых червей (полихет) и достигать нескольких метров. Ко­лоссальную роль по преобразованию вещества выполняют орга­низмы, для которых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в не­большие агрегаты и осаждая на дно.


Впечатляют примеры чисто механической деятельности не­которых организмов, например роющих животных (сурков, сус­ликов и др.), которые в результате переработки больших масс грунта создают своеобразный ландшафт. По представлениям В. И. Вернадского, практически все осадочные породы, а это слой до 3 км, на 95—99% переработаны живыми организмами. Даже такие колоссальные запасы воды, которые имеются в био­сфере, разлагаются в процессе фотосинтеза за 5—6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6—7 лет.

6. Высокая скорость обновления живого вещества. Подсчи­тано, что в среднем для биосферы она составляет 8 лет, при этом для суши — 14 лет, а для океана, где преобладают организ­мы с коротким периодом жизни (например, планктон), — 33 дня. В результате высокой скорости обновления живого веще­ства за всю историю существования жизни общая масса живого вещества, прошедшего через биосферу, примерно в 12 раз пре­вышает массу Земли. Только небольшая часть его (доли процен­та) законсервирована в виде органических остатков (по выраже­нию В. И. Вернадского, ушла в геологию), остальная же вклю­чилась в процессы круговорота.


Все перечисленные и другие свойства живого веществаобус­ловливаются концентрацией в нем больших запасов энергии. По В. И. Вернадскому, по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов.

Функции живого вещества. Всю деятельность живого веще­ства в биосфере можно, с определенной долей условности, све­сти к нескольким основополагающим функциям, которые позволяют значительно дополнить представление о его преобразу­ющей биосферно-геологической деятельности.

В. И. Вернадский выделял девять функций живого веще­ства: газовую, кислородную, окислительную, кальциевую, вос­становительную, концентрационную и другие. В настоящее время название этих функций несколько изменено, Некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).

1. Энергетическая. Связана с запасанием энергии в процес­се фотосинтеза, передачей ее по цепям питания, рассеиванием. Это функция — одна из важнейших и будет подробнее рассмотрена в разделе энергетики экосистем.

2. Газовая — способность изменять и поддерживать опре­деленный газовый состав среды обитания и атмосферы в целом. В частности, включение углерода в процессы фотосинтеза, а за­тем в цепи питания обусловливало аккумуляцию его в биоген­ном веществе (органические остатки, известняки и т.п.). В ре­зультате этого шло постепенное уменьшение содержания угле­рода и его соединений, прежде всего двуокиси (СО) в атмосфе­ре с десятков процентов до современных 0,03%. Это же отно­сится к накоплению в атмосфере кислорода, синтезу озона и другим процессам.


С газовой функцией в настоящее время связывают два пе­реломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфе­ре достигло примерно 1 % от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организ­мов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со временем, когда концентрация его достигла при­мерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового слоя в вер­хних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под сло­ем которой возможна была жизнь).

3. Окислительно-восстановительная. Связана с интенсифи­кацией под влиянием живого вещества процессов как окисле­ния, благодаря обогащению среды кислородом, так и восста­новления, прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановитель­ные процессы обычно сопровождаются образованием и накоп­лением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также зна­чительные придонные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.


4. Концентрационная — способность организмов концент­рировать в своем теле рассеянные химические элементы, повы­шая их содержание, по сравнению с окружающей организмы средой, на несколько порядков (по марганцу, например, в теле отдельных организмов — в миллионы раз). Результат концент­рационной деятельности — залежи горючих ископаемых, извес­тняки, рудные месторождения и т.п. Эту функцию живого ве­щества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных приклад­ных вопросов, например, для обогащения руд интересующими человека химическими элементами или соединениями.

5. Деструктивная — разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как са­мих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом ве­ществ. Наиболее существенную роль в этом отношении выпол­няют низшие формы жизни — грибы, бактерии (деструкторы, редуценты).

6. Транспортная — перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения).


7. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других функций). С ней, в конечном счете, связано преобразование физико-химических параметров среды. Эту функцию можно рас­сматривать в широком и более узком планах.

В широком понимании результатом данной функции явля­ется вся природная среда. Она создана живыми организмами, они же и поддерживают в относительно стабильном состоянии ее параметры практически во всех геосферах.

В более узком плане Средообразующая функция живого ве­щества проявляется, например, в образовании почв. В. И. Вер­надский, как отмечалось выше, почву называл биокосным те­лом, подчеркивая тем самым большую роль живых организмов в ее создании и существовании. Роль живых организмов в образо­вании почв убедительно показал Ч. Дарвин в работе "Образова­ние растительного слоя земли деятельностью дождевых червей". Известный ученый В. В. Докучаев назвал почву "зеркалом ландшафта", подчеркивая тем самым, что она продукт основного ландшафтообразующего элемента — биоценозов и, прежде все­го, растительного покрова.


Локальная средообразующая деятельность живых организ­мов и особенно их сообществ проявляется также в трансформа­ции ими метеорологических параметров среды. Это прежде все­го относится к сообществам с большой массой органического вещества (биомассой). Например, в лесных сообществах микро­климат существенно отличается от открытых (полевых) про­странств. Здесь меньше суточные и годовые колебания темпера­тур, выше влажность воздуха, ниже содержание углекислоты в атмосфере на уровне полога, насыщенного листьями (результат фотосинтеза), и повышенное ее количество в припочвенном слое (следствие интенсивно идущих процессов разложения органи­ческого вещества на почве и в верхних горизонтах почвы).

Из других средообразующих свойств растительного покро­ва следует назвать очистку воздуха и вод от загрязнений, усиле­ние питания подземных водных источников (грунтовых вод), сохранение почв от разрушения (эрозии) и т.п.

8. Наряду с концентрационной функцией живого вещества выделяется противоположная ей по результатам —рассеиваю­щая. Она проявляется через трофическую (питательную) и транс­портную деятельность организмов. Например, рассеивание ве­щества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, сменен покровов. Железо гемоглобина крови рассеивается, например, кровососущими насекомыми и т.п.

Важна также информационная функция живого вещества, выражающаяся в том, что живые организмы и их сообщества накапливают определенную информацию, закрепляют ее в на­следственных структурах и затем передают последующим поколениям. Это один из проявлений адаптационных механизмов.


Источник: studopedia.su

Живое вещество обеспечивает биогеохимический кругово­рот веществ и превращение энергии в биосфере. Выделяют сле­дующие основные геохимические функции живого вещества:

1. Энергетическая (биохимическая) – связывание и запаса­ние солнечной энергии в органическом веществе и последую­щее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедея­тельности организмов.

2. Газовая – способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. С газовой функцией связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в ат­мосфере достигло примерно 1% от современного уровня (пер­вая точка Пастера). Это обусловило появление первых аэроб­ных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произош­ло примерно 1,2 млрд. лет назад. Второй переломный период связывают со временем, когда концентрация кислорода дос­тигла примерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило воз­можность освоения организмами суши (до этого функцию за­щиты организмов от губительных космических излучений вы­полняла вода).


3. Концентрационная – «захват» из окружающей среды жи­выми организмами и накопление в них атомов биогенных хи­мических элементов. Концентрационная способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколь­ко порядков. Содержание углерода в растениях в 200 раз, а азо­та в 30 раз превышает их уровень в земной коре. Содержание марганца в некоторых бактериях может быть в миллионы раз больше, чем в окружающей среде. Результат концентрацион­ной деятельности живого вещества – образование залежей го­рючих ископаемых, известняков, рудных месторождений и т.п.

4. Окислительно-восстановительная – окисление и восста­новление различных веществ с участием живых организмов. Под влиянием живых организмов происходит интенсивная миг­рация атомов элементов с переменной валентностью (Fe, Mn, S, Р, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование серо­водорода и т.п.

5. Деструктивная – разрушение организмами и продукта­ми их жизнедеятельности, в том числе и после их смерти, как остатков органического вещества, так и косных веществ. Наи­более существенную роль в этом отношении выполняют реду­центы (деструкторы) – сапротрофные грибы и бактерии.

6. Транспортная – перенос вещества и энергии в результа­те активной формы движения организмов. Такой перенос мо­жет осуществляться на огромные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения).

7. Средообразующая – преобразование физико-химических параметров среды. Эта функция является в значительной мере интегральной – представляет собой результат совместного дей­ствия других функций. Она имеет разные масштабы проявле­ния. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локаль­ные структуры.

8. Рассеивающая – функция, противоположная концентра­ционной – рассеивание веществ в окружающей среде. Она проявляется через трофическую и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п. Железо ге­моглобина крови рассеивается кровососущими насекомыми.

9. Информационная – накопление живыми организмами оп­ределенной информации, закрепление ее в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

10. Биогеохимическая деятельность человека – превраще­ние и перемещение веществ биосферы в результате человече­ской деятельности для хозяйственных и бытовых нужд чело­века. Например, использование концентраторов углерода – нефти, угля, газа и др.

Таким образом, биосфера представляет собой сложную ди­намическую систему, осуществляющую улавливание, накоп­ление и перенос энергии путем обмена веществ между живым веществом и окружающей средой.

 

Свойства биосферы

Целостность и дискретность. Целостность биосферы обус­ловлена тесной взаимосвязью слагающих ее компонентов. Она достигается круговоротом вещества и энергии. Изменение од­ного компонента неизбежно приводит к изменению других и биосферы в целом. При этом биосфера – не механическая сумма компонентов, а качественно новое образование, обла­дающее своими особенностями и развивающееся как единое целое. Биосфера – система с прямыми и обратными (поло­жительными и отрицательными) связями, которые, в конечном счете, обеспечивают механизмы ее функционирования иустойчивости. На понимании целостности биосферы основы­ваются теория и практика рационального природопользова­ния. Учет этой закономерности позволяет предвидеть возмож­ные изменения в природе, дать прогноз результатам воздействия человека на природу.

Централизованность. Центральным звеном биосферы выс­тупают живые организмы (живое вещество). Это свойство, к сожалению, часто недооценивается человеком и в центр био­сферы ставится только один вид – человек (идеи антропоцен­тризма).

Устойчивость и саморегуляция. Биосфера способна возвращаться в исходное состояние, гасить возникающие возмуще­ния, создаваемые внешними и внутренними воздействиями, включением определенных механизмов. Гомеостатические ме­ханизмы биосферы связаны в основном с живым веществом, его свойствами и функциями. Биосфера за свою историю пережила ряд таких возмущений, многие из которых были зна­чительными по масштабам (извержения вулканов, встречи с астероидами, землетрясения и т. п.). Гомеостатические меха­низмы биосферы подчинены принципу Ле Шателье–Брауна: при действии на систему сил, выводящих ее из состояния ус­тойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется.

Ритмичность. Биосфера проявляет ритмичность развития – повторяемость во времени тех или иных явлений. В природе существуют ритмы разной продолжительности. Основные из них – суточный, годовой, внутривековые и сверхвековые. Су­точный ритм проявляется в изменении температуры, давле­ния и влажности воздуха, облачности, силы ветра, в явлениях приливов и отливов, циркуляции бризов, процессах фотосин­теза у растений, поведении животных. Годовая ритмика – это смена времен года, изменения в интенсивности почвообразо­вания и разрушения горных пород, сезонность в хозяйствен­ной деятельности человека. Суточная ритмика, как известно, обусловлена вращением Земли вокруг оси, годовая – движе­нием Земли по орбите вокруг Солнца. Разные экосистемы обладают различной суточной и годовой ритмикой. Годовая ритмика лучше всего выражена в умеренном поясе и очень слабо – в экваториальном. Наблюдаются и более продолжи­тельные ритмы (11, 22–23, 80–90 лет и др.). Ритмические яв­ления не повторяют полностью в конце ритма того состояния природы, которое было в его начале. Именно этим и объясня­ется направленное развитие природных процессов.

Круговорот веществ и энергозависимость. Биосфера – от­крытая система. Ее существование невозможно без поступле­ния энергии извне. Основная доля приходится на энергию Солнца. В отличие от количества солнечной энергии, количе­ство атомов вещества на Земле ограничено. Круговорот ве­ществ обеспечивает неисчерпаемость отдельных атомов хими­ческих элементов. При отсутствии круговорота, например, за короткое время был бы исчерпан основной «строительный ма­териал» живого – углерод.

Горизонтальная зональность и высотная поясность. Общебио­сферной закономерностью являетсягоризонтальная зональ­ность закономерное изменение природной среды по на­правлению от экватора к полюсам. Зональность обусловлена неодинаковым количеством поступающего на разные широты тепла в связи с шарообразной формой Земли. Зональны кли­мат, воды суши и океана, процессы выветривания, некоторые формы рельефа, образующиеся под влиянием внешних сил (поверхностных вод, ветра, ледников), растительность, почвы, животный мир.

Наиболее крупные зональные подразделениягеографи­ческие пояса. Они отличаются друг от друга температурными условиями, а также общими особенностями циркуляции атмосферы, почвенно-растительного покрова и животного мира. На суше выделяются следующие географические пояса: эква­ториальный и в каждом полушарии субэкваториальный, тро­пический, субтропический, умеренный, а также в Северном полушарии субарктический и арктический, а в Южном – суб­антарктический и антарктический. Аналогичные по названию пояса выявлены и в Мировом океане. Географические пояса протягиваются преимущественно в широтном направлении.

Внутри поясов по соотношению тепла и влаги выделяются природные зоны, названия которых определяются по преобла­дающему в них типу растительности. Так, например, в субар­ктическом поясе это зоны тундры и лесотундры, в умеренном поясе – зоны лесов, лесостепи, степи, полупустынь и пус­тынь, в тропическом поясе – зоны лесов, редколесий и са­ванн, полупустынь и пустынь. Как правило, они совпадают с основными и переходными типами природных экосистем (биомами и экотонами). В связи с неоднородностью земной по­верхности, а следовательно, и увлажнения в различных частях материков зоны не всегда имеют широтное простирание.

Зональность характерна и для Мирового океана. От экватора к полюсам изменяются свойства поверхностных вод (температу­ра, соленость, плотность и прозрачность, интенсивность волне­ния и др.), а также состав растительности и животного мира.

Высотная поясность закономерная смена природной сре­ды с подъемом в горы от их подножия до вершин. Она обус­ловлена изменением климата с высотой: понижением темпе­ратуры (на 0,6° С на каждые 100 м подъема) и до определен­ной высоты (до 2–3 км) увеличением осадков. Смена поясов в горах происходит в той же последовательности, как и на рав­нине при движении от экватора к полюсам. Отличием являет­ся присутствие в горах особого пояса субальпийских и аль­пийских лугов, которого нет на равнинах. Высотная поясность начинается в горах с аналога той горизонтальной зоны, в пре­делах которой расположены горы. Так, в горах, находящихся в степной зоне, нижний пояс – горно-степной, в лесной – горно-лесной и т.д. Количество высотных поясов зависит от высоты гор и их местоположения.

Большое разнообразие условий обитания и живых организ­мов. Биосфера – система, характеризующаяся большим раз­нообразием. Это свойство обусловлено следующими причи­нами: разными средами жизни (водной, наземно-воздушной, почвенной, организменной); разнообразием природных зон, различающихся по климатическим, гидрологическим, почвен­ным, биотическим и другим свойствам; наличием регионов, различающихся по химическому составу (геохимические про­винции); биологическим разнообразием живых организмов.

В настоящее время описано более 3 млн. видов. Однако ре­альное число видов на Земле в несколько раз больше, чем их описано. Не учтены многие насекомые и микроорганизмы, особенно в тропических лесах, глубинных частях океанов и в других малоосвоенных местообитаниях. Кроме этого совре­менный видовой состав – это лишь небольшая часть видово­го разнообразия, которое принимало участие в процессах био­сферы за период ее существования. Каждый вид имеет опре­деленную продолжительность жизни (10–30 млн. лет), поэто­му число видов, принимавших участие в эволюции биосферы, исчисляется сотнями миллионов. Считается, что к настояще­му времени арену биосферы оставили более 95% видов.

Разнообразие обеспечивает возможность дублирования, под­страховки, замены одних звеньев другими, степень сложности и прочности пищевых и другие связей. Поэтому разнообразие рассматривают как основное условие устойчивости любой эко­системы и биосферы в целом.

К сожалению, практически вся без исключения деятель­ность человека подчинена упрощению экосистем любого ран­га. Сюда следует отнести и уничтожение отдельных видов или резкое уменьшение их численности, и создание агроценозов на месте сложных природных систем. Например, полностью исчезли с лица земли степи как тип экосистем и ландшаф­тов, резко уменьшились площади лесов (до появления чело­века они занимали примерно 70% суши, а сейчас – не более 20–23%). Идет дальнейшее, невиданное по масштабам унич­тожение лесных экосистем, особенно наиболее ценных и сложных тропических, спрямление русел рек, создание про­мышленных районов и т.п.

Простые экосистемы с малым разнообразием удобны для эксплуатации, они позволяют в короткое время получить зна­чительный объем нужной продукции (например, с сельскохо­зяйственных полей), но за это приходится рассчитываться сни­жением устойчивости экосистем, их распадом и деградацией среды.

Не случайно, что биологическое разнообразие отнесено Конференцией ООН по окружающей среде и развитию (1992 г.) к числу трех важнейших экологических проблем, по которым приняты специальные заявления или конвенции. Кро­ме сохранения разнообразия, такие конвенции приняты по со­хранению лесов и по предотвращению изменений климата.

Источник: poznayka.org

Уровни организации живого вещества

Живое вещество как совокупность всех организмов, живущих на Земле, состоит из нескольких царств (Прокариоты, Животные, Растения, Грибы), которые находятся в сложных взаимоотношениях. Живое вещество имеет сложное строение и разные уровни организации. Рассмотрим некоторые из них в порядке усложнения.

1. Молекулярно-генный (суборганизменный) — особая форма организации живого, присущая всем без исключения организмам, представляющая собой совокупность различных органических и неорганических веществ, связанных между собой определенной структурой и системой биохимических процессов, позволяющих сохранять данную совокупность соединений как целостную систему, способную к росту, развитию, самосохранению и размножению в течение всего времени существования этого организма, т. е. до смерти.

2. Клеточный — все живое (кроме неклеточных форм жизни) образовано особыми структурами — клетками, которые имеют строго определенное строение, присущее как организмам из царства Растения, так и организмам из царств Животные и Грибы; некоторые организмы состоят из одной клетки, поэтому такие организмы при клеточном уровне соответствуют и новому уровню организации — организменному (см. пятый уровень организации).

3. Тканевый — характерен для сложных многоклеточных организмов, у которых произошла специализация клеток по выполняемым функциям, что привело к образованию тканей — совокупности клеток, имеющих одинаковое происхождение, близкое строение и выполняющих одинаковые или близкие по характеру функции; различают растительные и животные ткани так, у растений выделяют покровные, основные, механические, проводящие ткани и меристемы (ткани роста); у животных — покровные, нервные, мышечные и соединительные ткани.

4. Органный — у высокоорганизованных организмов ткани образуют структуры, предназначенные для выполнения определенных функций, которые называются органами, а органы объединяются в системы органов (например, желудок входит в состав пищеварительной системы).

5. Организменный — системы органов объединены в единое целое — организм, при функционировании которого реализуется жизнедеятельность конкретного живого существа; известно, что в природе существует большое число одноклеточных организмов.

6. Популяционно-видовой — особи одного вида образуют особые группировки, живущие на данной конкретной территории и занимающие определенную экологическую нишу, которые называются популяциями, а популяции одинаковых организмов образуют подвиды и виды.

7. Биогеоценотический — этот уровень организации живого вещества связан с тем, что на данной территории проживает определенное количество популяций различных видов (как животных, так и растений, грибов, прокариотов и неклеточных форм жизни), которые взаимосвязаны друг с другом различными связями, в том числе и пищевыми.

8. Биосферный — это высший уровень организации живого на планете Земля, представляющий собой всю совокупность живых существ, живущих на ней, которые взаимосвязаны друг с другом планетарным круговоротом химических элементов и химических соединений; нарушение этого круговорота может привести к глобальной катастрофе и даже к гибели всего живого.

Следовательно, 1-5 уровни организации характерны для отдельно взятого организма, а 6-8 — для совокупности организмов. Необходимо помнить, что человек — это составная часть живого вещества на планете Земля, но его деятельность из-за наличия разума значительно отличается от деятельности других организмов, и, тем не менее, он составная часть природы, а не ее «царь».

Краткая характеристика химического состава живого вещества

Живое вещество представляет собой сложную систему биоорганических, органических и неорганических соединений. В составе живого вещества обнаружены практически все устойчивые химические элементы, известные человеку, но в разных количествах. Эти элементы подразделяют на биогенные и небиогенные, исходя из их роли в живых организмах.

Атомы химических элементов входят в состав химических соединений, которые могут быть органическими, биоорганическими и неорганическими.

Важнейшим неорганическим веществом, входящим в состав живых организмов, является вода. Кроме воды организмы могут содержать и другие неорганические вещества — соли, кислоты, основания.

Основу живого вещества составляют биоорганические и органические соединения. К биоорганическим веществам относят белки, нуклеиновые кислоты, витамины, жиры и углеводы. Эти вещества называют биоорганическими потому, что эти соединения вырабатываются в организмах и без этих веществ жизнь принципиально невозможна (особенно это относится к белкам и нуклеиновым кислотам). Примером органических веществ, входящих в состав живого вещества, являются органические кислоты (яблочная, уксусная, молочная и др.), мочевина и другие химические соединения.

Общая характеристика клеточных организмов, их классификация по наличию ядра в клетке

Клеточные организмы преобладают над неклеточными и имеют сложную классификацию. При изучении строения клетки было обнаружено, что большинство клеточных форм организмов в составе клеток обязательно содержит особый органоид — ядро. Однако в клетках некоторых организмов ядро отсутствует. Поэтому клеточные организмы разделяют на две большие группы — ядерные (или эукариоты) и безъядерные (или прокариоты). В данном подразделе рассмотрим прокариоты.

Прокариотами (безъядерными) называют организмы, клетки которых не имеют отдельно сформированного ядра.

К безъядерным организмам относятся бактерии и сине-зеленые водоросли, которые образуют царство Дробянки, входящее в надцарство Доядерные, или Прокариоты. В практическом отношении наибольшее значение имеют бактерии.

Тело бактерий состоит из одной клетки разной формы, которая имеет оболочку и цитоплазму. Ярко выраженные органоиды отсутствуют; в клетке содержится одна молекула ДНК; она замкнута в кольцо, место ее нахождения в цитоплазме называется нуклеоидом.

По форме клетки бактерии разделяют на кокки (шарообразные), бациллы (палочкообразные), вибрионы (дугообразно изогнутые), спириллы (изогнутые в форме спирали).

Бактерии размножаются обычным делением (в благоприятных условиях каждое деление осуществляется за 20-30 минут). При наступлении неблагоприятных условий клетка бактерии превращается в спору, обладающую высокой устойчивостью к воздействию различных факторов — температуры, влажности, радиации. Попадая в благоприятные условия, споры набухают, их оболочки разрываются и бактериальные клетки становятся жизненно активными.

По отношению к кислороду различают анаэробные (живут в средах, где нет молекулярного кислорода) и аэробные (для их жизни необходим О2), существуют также бактерии, которые могут жить и в аэробной, и в анаэробной среде.

Большинство бактерий относятся к гетеротрофам (для их жизнедеятельности необходимы органические вещества, являющиеся источником и энергии, и материала для синтеза собственных органических веществ). Часть бактерий являются паразитами, а часть — сапрофитами (питаются мертвыми органическими веществами). Бактерии-паразиты являются консументами, а бактерии-сапрофиты — редуцентами. Небольшая часть бактерий относится к автотрофам (они синтезируют органические вещества из неорганических, используя энергию реакций окисления различных неорганических веществ — сероводорода, азота и т. д.). Эти бактерии являются хемосинтетиками, например серобактерии, азотобактерии и др. Есть среди бактерий и фотосинтетики, которые используют солнечную энергию.

Биологическая роль бактерий очень велика. Они обогащают почву азотом (азотфиксирующие бактерии). Бактерии-сапрофиты превращают органические вещества в неорганические, являясь звеном в круговороте веществ в природе. Бактерии-паразиты вызывают заболевания человека и других организмов (холерные вибрионы, дизентерийные палочки и т. д.). В природе эти бактерии вызывают различные эпидемии, что может привести к гибели большого количества людей. Для борьбы с этими бактериями используют методы профилактики, дезинфекции и лечение различными лекарственными препаратами. Большое значение имеет соблюдение правил личной и общественной гигиены.

Вид, его критерии и экологическая характеристика

Живое вещество в природе существует в виде отдельных дискретных таксономических единиц — видов (биологических видов).

Биологический вид (вид) — совокупность особей, обладающих общими морфофизиологическими признаками, биохимическим, генетическим (наследственным) сходством, свободно скрещивающихся друг с другом и дающих плодовитое потомство, приспособленных к сходным условиям существования, занимающих в природе определенный ареал (область распространения), т. е. занимающих одну и ту же экологическую нишу.

Виды образованы популяциями и подвидами (последнее характерно не для всех видов). Биологический вид характеризуется следующими критериями:

1) генетическим, т.е. все особи данного вида обладают одинаковым набором хромосом;

2) биохимическим, т. е. для всех особей этого вида характерны одинаковые химические соединения (белки, нуклеиновые кислоты и др.), которые отличаются от аналогичных соединений других видов;

3) морфофизиологическим, т. е. организмы одного вида имеют общие признаки внешнего и внутреннего строения и характеризуются одинаковыми процессами, обеспечивающими их жизнедеятельность;

4) экологическим, т. е. особи данного вида вступают в одинаковые (отличные от других видов) взаимоотношения с природной средой;

5) историческим — особи данного вида имеют одинаковое происхождение и в процессе внутриутробного развития проходят одинаковый цикл этого развития согласно биогенетическому закону;

6) географическим — особи данного вида проживают на определенной территории и приспособлены к существованию на данной территории.

В науке «экология» широко используют следующие разновидности термина «вид».

1. Вид вредный — наносящий человеку хозяйственный урон или вызывающий заболевания; понятие относительное, так как любой вид, живущий на планете, занимает определенную экологическую нишу и выполняет определенную экологическую роль; например, волк может наносить большой урон хозяйственной деятельности человека, но он является «санитаром» природы, играет большую роль в «отбраковке» нежизнеспособных особей тех видов, которыми он питается.

2. Вымерший вид — это вид, который исчез в результате процессов эволюции, например, птеродактиль.

3. Вымирающий вид — такой вид, свойства которого не соответствуют современным условиям существования и генетические возможности к приспособлению к жизни в новых условиях практически исчерпаны; такие виды могут сохраниться только в результате полного его окультивирования (заносится в Красную книгу).

4. Исчезающий вид — вид организмов, находящихся под угрозой вымирания за счет того, что численность сохранившихся особей недостаточна для воспроизводства вида, но генетически вид имеет благоприятные возможности для приспособления к условиям внешней среды (заносится в Красную книгу как вид, находящийся под угрозой).

5. Охраняемый вид — вид, преднамеренное нанесение вреда особям которого и нарушение среды его обитания запрещено определенными законодательными актами разного ранга (международными, государственными, местными), например соболь и др.

Структура вида состоит в том, что он образован отдельными особями, объединенными в популяции и подвиды. Наличие подвидов характерно только для тех видов, которые имеют большие ареалы, характеризующиеся разнообразными условиями.

Популяция — группа особей данного вида, способных к скрещиванию и производству полноценного потомства, проживающих на данной территории, имеющей естественные границы с другими территориями, что затрудняет скрещивание особей данной популяции с особями другой. Следует помнить, что экологической единицей вида является популяция.

Популяции разных видов, проживающих на данной территории, образуют биоценоз, в котором эти популяции связаны друг с другом различными связями, в том числе и пищевыми.

Неорганические вещества и их роль в живом веществе

Живое вещество, как и любое другое вещество, образовано атомами химических элементов, входящих в состав неорганических и органических соединений, совокупность которых образует живое вещество, качественно отличающееся и от неорганических, и от органических индивидуальных химических соединений.

Неорганическими называют вещества, в составе которых отсутствуют атомы углерода (кроме самого углерода, его оксидов, угольной кислоты, ее солей, родана, родановодорода, роданидов, циана, циановодорода, цианидов).

В состав организмов входят вода, некоторые соли натрия, калия, кальция и других химических элементов.

Краткая характеристика роли некоторых оксидов, гидроксидов и солей в живом веществе

Из оксидов в организмах большое значение имеет углекислый газ (углекислота, оксид углерода (IV), диоксид (двуокись) углерода). Это вещество является одним из продуктов дыхания (для всех организмов!). При растворении в воде (например, в цитоплазме, плазме крови и т. д.) углекислый газ образует угольную кислоту, которая при диссоциации распадается на гидрокарбонат-ионы (НСО3) и карбонат-ионы (СО2-3), образующие (совместно) карбонатную буферную систему, стабилизирующую реакцию среды. Избыток СO2 удаляется из организма в результате процессов, протекающих при дыхании (у всех организмов: и у растений, и у животных).

Важнейшими гидроксидами, содержащимися в живом веществе, являются угольная (Н2СO3), фосфорная (Н3РO4) и некоторые другие кислоты. Как указано выше (на примере угольной кислоты), эти гидроксиды способствуют созданию буферных систем в водных растворах, что приводит к стабилизации реакции среды в протоплазме или в других жидких средах, содержащихся в организме. Фосфорная кислота играет огромную роль в образовании различных фосфорсодержащих соединений (например, в образовании АДФ из АМФ или АТФ из АДФ; АТФ — аденозинтрифосфат, АДФ — аденозиндифосфат, АМФ — аденозинмонофосфат; эти вещества играют большую роль в процессах диссимиляции и ассимиляции).

Важна для организмов и хлороводородная (соляная) кислота (НСI). Она содержится в желудочном соке или в растворах, которые способствуют перевариванию пищи (например, желудочный сок в желудке человека).

В организмах соли находятся в диссоциированном состоянии, т. е. в виде ионов. Рассмотрим биологическую роль некоторых анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов) в живом веществе.

Краткая характеристика биологической роли катионов

В живом веществе наибольшее значение имеют следующие катионы: К+, Са2+, Na+, Mg2+, Fе2+, Мn2+ и некоторые другие.

1. Катионы натрия (Nа+). Эти ионы создают определенное осмотическое давление (Осмотическое давление возникает в водных растворах и является силой, под воздействием которой осуществляется осмос, т.е. односторонняя диффузия веществ через полупроницаемую мембрану). Кроме того, совместно с катионами калия (К+) за счет различной проницаемости клеточной мембраны, они создают мембранное равновесие, при котором возникает разность биохимических потенциалов, что обеспечивает проводимость клеток и тканей организма; участвуют в водном и ионном обмене организма в целом. В организм (клетку) поступают в виде водного раствора хлорида натрия. У животных и человека в результате потоотделения может теряться большое количество хлорида натрия, что резко снижает их работоспособность. Данные ионы совместно с некоторыми органическими и неорганическими анионами регулируют кислотно-щелочное равновесие (например, с ионами НСO3, СН3СОО и др.).

2. Катионы К+. Эти ионы совместно с ионами Nа+ создают мембранное равновесие. Они активизируют ферменты белкового синтеза, а в организмах высших животных и человека влияют на биоритмы сердца. Ионы К+ входят в состав макроудобрений — калийных и существенно влияют на продуктивность сельскохозяйственных растений.

3. Катионы Са2+. Данные ионы являются антагонистами ионов К+ (т. е. проявляют противоположное действие по сравнению с последними). Они входят в состав мембранных структур, образуют пектиновые вещества, которые образуют межклеточное вещество в растительных организмах. Эти ионы в составе солей кальция участвуют в образовании важнейшей соединительной ткани — костной, которая образует скелет позвоночных животных и человека и некоторых др. организмов (например, моллюсков, кишечнополостных и др.). Осуществляют регуляцию процессов образования клеток, участвуют в реализации мышечных сокращений, играют большую роль в свертывании крови и в др. процессах.

4. Катионы Мg2+. Роль этих ионов аналогична (в ряде случаев) роли ионов Са2+ и они содержатся в организмах в определенных соотношениях. Кроме того, ионы Мg2+ входят в состав важнейшего фотосинтезирующего пигмента растений — хлорофилла, активизируют синтез ДНК и участвуют в реализации энергетического обмена.

5. Ионы Fе2+. Играют большую роль в жизни многих животных, так как входят в состав важнейшего дыхательного пигмента — гемоглобина, участвующего в процессе дыхания. Они входят в состав мышечного белка — миоглобина, принимают участие в синтезе хлорофилла, т.е. ионы Fе2+ являются основой соединений, посредством которых реализуются многие окислительно-восстановительные процессы.

6. Ионы Си2+, Мn2+, Сг3+ и ряд других ионов также принимают участие в окислительно-восстановительных процессах, реализующихся в различных организмах (эти ионы входят в состав сложных металлоорганических соединений).

Краткая характеристика биологической роли некоторых анионов

Наибольшее значение имеют анионы Н2РО4, НРО2-4, Сl, I, РО3-4, Вг, F, НСО3, NO3, SО2-4 и ряд др. Кратко рассмотрим роль некоторых из этих ионов в различных организмах.

1. Нитрат- и нитрит-ионы (NO3, NO2, соответственно).

Ионы, содержащие азот, играют большую роль в организмах растений, так как в своем составе содержат связанный азот и используются (наряду с катионами аммония — NH+4) для синтеза азотсодержащих «веществ жизни» — белков и нуклеиновых кислот. При поступлении избытка этих ионов в организм растения они накапливаются в них и, попадая (в составе пищи) в организм человека и животных, могут вызывать нарушения в обмене веществ этих организмов («нитратное и нитритное отравление»). Это делает необходимым оптимальное использование азотных удобрений при их внесении в почву.

2. Гидро- и дигидрофосфат-ионы (НРО2-4, Н2РО4 — соответственно).

Эти ионы участвуют в обмене веществ и являются необходимыми при синтезе нуклеиновых кислот, моно-, ди- и триаденозин-фосфатов, играющих большую роль в энергетическом обмене и синтезе органических веществ в различных организмах (растительных, животных и др.). Данные ионы участвуют в поддержании кислотно-основного равновесия, сохраняя в определенных пределах постоянство реакции среды.

3. Сульфат-ионы (SO24) — источник серы, необходимый для синтеза серосодержащих природных альфа-аминокислот, используемых при получении белков. Необходимы для процессов синтеза некоторых витаминов, ферментов (в организмах растений). В организмах животных сульфат-ионы являются продуктом реакций обезвреживания химических соединений, образующихся в печени.

4. Галогенид-ионы (Сl — хлорид-ионы, Вг — бромид-ионы, I — иодид-ионы, F — фторид-ионы). Они являются противоионами для катионов (особенно Сl), то есть создают нейтральную систему с катионами. Система ионов (катионов и анионов) создает вместе с водой осмотическое давление и тургор; хлорид-ионы относятся к макроэлементам для животных, а остальные галогенид-ионы являются микроэлементами, т.е. необходимы любым организмам в небольших (микро-) количествах. Значение иодид-ионов состоит в том, что они входят в состав важнейшего гормона — тироксина, а избыток и недостаток этих ионов приводит к появлению различных заболеваний у человека (миксидема и базедова болезнь). Фторид-ионы влияют на обмен в костной ткани зубов, бромид-ионы входят в состав химических соединений, содержащихся в гипофизе.

Общая характеристика и классификация органических соединений, входящих в состав живого вещества, и их экологическая роль

Вещества, в состав которых входят атомы углерода (исключая углерод, его оксиды, угольную кислоту, ее соли, родан, родано-водород, роданиды, циан, циановодород, цианиды, карбонилы и карбиды), называются органическими.

Органические вещества имеют очень сложную классификацию. Некоторые из этих веществ не содержатся в организмах (ни в живых, ни в мертвых). Они были получены искусственным путем и в природе не встречаются. Ряд органических соединений не «усваивается» организмами, т.е. не разлагается в природе под воздействием редуцентов и детритофагов. К таким соединениям относят полиэтилен, СМС (синтетические моющие средства), некоторые ядохимикаты и др. Поэтому при использовании органических веществ, полученных человеком химическим путем, необходимо учитывать их способность подвергаться различным превращениям в природных условиях, т. е. «усвоение» этих веществ биосферой.

Органические вещества, содержащиеся в организме, имеют большое экологическое значение, недостаток, избыток или отсутствие того или иного вещества приводят либо к различным заболеваниям, либо к гибели данного организма. Наибольшее значение имеют белки, нуклеиновые кислоты, углеводы, жиры и витамины.

Источник: www.polnaja-jenciklopedija.ru

Устойчивость экосистем и биосферы в целом зависит от многих факторов, суть наиболее важных из них состоит в следующем:

1. Биосфера использует внешние источники энергии – солнечную энергию и энергию разогрева земных недр для упорядочения ее организации, не вызывая загрязнения ОС. Постоянное использование определенного количества энергии и ее рассеивание в виде тепла создало эволюционно сложившийся тепловой баланс в биосфере. Сквозной поток энергии, проходя через трофические уровни экосистемы, постоянно гасится (правило 10% Линдемана).

Если автотрофные растения, с которых начинается трансформация солнечной энергии в живое вещество, преобразуют ее из рассеянного состояния в концентрированное, синтезируя органическое вещество, то человек, напротив, забирая органическое вещество, в том числе и из запасников природы, сжигает его, переводя сосредоточенную в нем энергию из концентрированного состояния в рассеянное. Причем при ведении работ по добыче энергетических ресурсов человек разрушает биологические характеристики почв, происходит гибель или деградация растительного покрова, загрязняются водные объекты и атмосфера, формируются отвалы пород, что приводит к подъему уровня грунтовых вод и появлению в окружающей местности контурного кольца из озер, болот и т.д.

2. Биосфера использует вещества (преимущественно легкие биогенные элементы) в основном в форме круговоротов. Биогеохимические циклы элементов отработаны эволюционно и не приводят к накоплению вредных отходов.

Вмешивание человека в отдельные круговороты изложено в предыдущем разделе. Общий же вывод следующий. Человек использует вещество крайне неэффективно, при этом образуется огромное количество отходов, многие из них переводятся из пассивной формы, в которой они находились в природной среде, в активную, токсичную форму. Сравнительный анализ круговоротов веществ в природе и в хозяйственной деятельности подтверждает исключительно экономное использование вещества в природе: 98–99% вещества находится в круговороте и лишь 1–2% выходит из круговорота, при этом создавая геологический запас. Человек же копирует природные круговороты с точностью до наоборот: лишь 1–2% первичного сырья используется в круговоротах, 98–99% уходит в отходы.

3. В биосфере существует огромное многообразие видов и биологических сообществ. Конкурентные и хищнические отношения между видами способствуют установлению между ними равновесия. При этом практически отсутствуют доминирующие виды с чрезмерной численностью, что обеспечивает защиту биосферы от сильной опасности со стороны внутренних факторов. Видовое разнообразие – это фактор повышения устойчивости экосистем к воздействию внешних факторов. Генофонд дикой природы – бесценный дар, возможности которого пока использованы в ничтожно малой степени.

Исчезновение любого из видов – это не только безвозвратная потеря природного генофонда, но и снижение устойчивости отдельных экосистем и биосферы в целом, как огромной и чрезвычайно сложной экосистемы. Путь человечества, к сожалению, отмечен гибелью многих представителей флоры и фауны.

4. Практически все закономерности, характерные для живого вещества, имеют адаптивное значение. Биосистемы вынуждены приспосабливаться к непрерывно изменяющимся условиям жизни. Эти значения имеют разную шкалу времени – от эволюционной до сиюминутной. В вечно меняющейся среде жизни каждый вид организма адаптирован по-своему. Это выражается правилом экологической индивидуальности: двух идентичной видов не существует. Экологическая специфичность видов подчеркивается так называемой аксиомой адаптированности: каждый вид адаптирован к строго определенной специфичной для него совокупности условий. Расширяя хозяйственную деятельность, человек в короткие сроки меняет параметры экологических факторов, и многие виды не успевают приспособиться к таким быстрым изменениям.

5. Саморегуляция, или поддержание численности популяции, зависит от совокупности экологических факторов. Каждая популяция, взаимодействуя с природой как целостная система, словно бы предчувствует возможные последствия происходящего и вырабатывает формы поведения, способные если не предотвратить надвигающийся кризис, то, во всяком случае, смягчить его последствия популяции в целом. Правило популяционного максимума: численность естественных популяций ограничена истощением пищевых ресурсов и условий размножения, недостаточностью этих ресурсов и слишком коротким периодом ускорения роста популяции. В этом смысле очень характерно поведение леммингов – группы мелких млекопитающих, живущих в лесах и тундрах Евразии и Северной Америки. В некоторые годы они сильно размножаются в огромных количествах и предпринимают далекие миграции. В ходе этих миграций массовое самоубийство леммингов предотвращает возможность перенаселения и обеспечивает сохранение популяции в своей экологической нише. «Феномен леммингов» – плохо понимаемая нами реакция популяции на угрозу ее возможной гибели. Естественно, это крайняя форма стабилизации численности популяции. Однако любая популяция обладает строго определенной генетической, фенотической, половозрастной и др. структурой. Она не может состоять из меньшего числа индивидов, чем это необходимо для обеспечения ее устойчивости к факторам внешней среды. Выход за пределы минимума чреват для популяции гибелью: она уже не будет в состоянии самовосстановиться.

Человек способствовал нарушению популяционной стабильности. Растет количество сопутствующих человеку видов (крыс, тараканов и т.д.), а численность многих других популяции, напротив, сокращается, причем иногда в катастрофических размерах, что ставит вид под угрозу полного уничтожения.

Источник: studopedia.ru

Функции живого вещества биосферы 

  1. Энергетическая функция
    Продуценты полгощают солнечную энергию, преобразуя неорганические вещества в органические, редуценты разлагают органические вещества до неорганических. Часть энергии в процессе преобразуется в тепло.
  2. Концентрационная живого вещества
    В результате жизнедеятельности организмов накапливаются те или иные вещества.
  3. Деструктивная
    Это следствие энергетической функции — органическое вещество разлагается в результате круговорота веществ и переходит в минеральную (неорганическую) форму.
  4. Средообразующая функция живого вещества
    Живое вещество меняет, преобразует окружающую среду.
  5. Транспортная
    Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ против сил тяжести и в горизонтальном направле­нии.

(Правила комментирования)

Источник: distant-lessons.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.