Какова толщина мантии


Мантия Земли — часть геосферы, расположенная между корой и ядром. В ней находится большая доля всего вещества планеты. Изучение мантии важно не только с точки зрения понимания внутренней структуры Земли. Оно может пролить свет на формирование планеты, дать доступ к редким соединениям и породам, помочь понять механизм землетрясений и движения литосферных плит. Однако получить информацию о составе и особенностях мантии непросто. Бурить скважины так глубоко люди пока не умеют. Мантия Земли в основном сейчас изучается при помощи сейсмических волн. А также путем моделирования в условиях лаборатории.

Согласно современным представлениям, внутреннее строение нашей планеты подразделяется на несколько слоев. Верхний — это кора, далее лежат мантия и ядро Земли. Кора — твердая оболочка, делящаяся на океаническую и континентальную. Мантия Земли отделена от нее так называемой границей Мохоровичича (по имени хорватского сейсмолога, установившего ее местоположение), которая характеризуется скачкообразным ростом скоростей продольных сейсмических волн.


Мантия составляет примерно 67 % массы планеты. По современным данным, ее можно разделить на два слоя: верхний и нижний. В первом выделяют также слой Голицына или среднюю мантию, являющуюся переходной зоной от верхней к нижней. В целом мантия простирается на глубине от 30 до 2900 км.

Ядро планеты, по представлению современных ученых, состоит в основном из железоникелевых сплавов. Оно также подразделяется на две части. Внутреннее ядро — твердое, его радиус оценивается в 1300 км. Внешнее — жидкое, имеет радиус в 2200 км. Между этими частями выделяют переходную зону.

Кора и верхняя мантия Земли объединяются понятием «литосфера». Это твердая оболочка, имеющая стабильные и подвижные области. Твердая оболочка планеты состоит из литосферных плит, которые, как предполагается, перемещаются по астеносфере — довольно пластичному слою, вероятно, представляющему собой вязкую и сильно нагретую жидкость. Она является частью верхней мантии. Нужно отметить, что существование астеносферы как непрерывной вязкой оболочки не подтверждается сейсмологическими исследованиями. Изучение структуры планеты позволяет выделить несколько подобных слоев, размещающихся по вертикали. В горизонтальном же направлении астеносфера, видимо, постоянно прерывается.

Способы изучения мантии

Слои, лежащие ниже коры, малодоступны для изучения. Огромная глубина, постоянное увеличение температуры и возрастание плотности являются серьезной проблемой для получения информации о составе мантии и ядра. Однако представить структуру планеты все-таки можно. При изучении мантии главными источниками информации становятся геофизические данные. Скорость распространения сейсмических волн, особенности электропроводности и силы тяжести позволяют ученым делать предположения о составе и других особенностях нижележащих слоев.


Кроме того, некоторую информацию удается получить из магматических горных пород и фрагментов мантийных пород. К числу последних относятся алмазы, которые могут многое рассказать даже о нижней мантии. Встречаются мантийные породы и в земной коре. Их изучение помогает понять состав мантии. Однако они не заменят образцов, добытых непосредственно из глубоких слоев, поскольку в результате различных процессов, протекающих в коре, их состав отличен от мантийного.

Мантия Земли: состав

Еще один источник информации о том, что представляет собой мантия, — метеориты. Согласно современным представлениям, хондриты (самая распространенная на планете группа метеоритов) по составу близки к земной мантии. Предполагается, что она содержит элементы, которые находились в твердом состоянии или входили в твердое соединение в процессе формирования планеты. К ним относится кремний, железо, магний, кислород и некоторые другие. В мантии они, объединяясь с диоксидом кремния, образуют силикаты. В верхнем слое располагаются силикаты магния, с глубиной растет количество силиката железа. В нижней мантии происходит разложение этих соединений на оксиды (SiO2, MgO, FeO).

Особый интерес для ученых представляют породы, не встречающиеся в земной коре. Как предполагается, в мантии таких соединений (гроспидиты, карбонатиты и так далее) немало.

Слои


Остановимся подробнее на протяженности слоев мантии. По представлениям ученых, верхних из них занимает диапазон примерно от 30 до 400 км от земной поверхности. Далее располагается переходная зона, которая уходит вглубь еще на 250 км. Следующий слой — нижний. Его граница располагается на глубине около 2900 км и соприкасается с внешним ядром планеты.

С продвижением вглубь планеты, повышается температура. Мантия Земли находится под действием крайне высокого давления. В зоне астеносферы действие температуры перевешивает, поэтому здесь вещество находится в так называемом аморфном или полурасплавленном состоянии. Глубже под действием давления оно становится твердым.

Исследования мантии и границы Мохоровичича

Мантия Земли не дает покоя ученым уже достаточно длительное время. В лабораториях над породами, предположительно входящими в состав верхнего и нижнего слоя проводятся эксперименты, позволяющие понять состав и особенности мантии. Так, японскими учеными было установлено, что нижний слой содержит большое количество кремния. В верхней мантии располагаются запасы воды. Она поступает из земной коры, а также проникает отсюда на поверхность.


Особый интерес представляет поверхность Мохоровичича, природа которой до конца непонятна. Сейсмологические исследования предполагают, что на уровне 410 км под поверхностью происходит метаморфическое изменение пород (они становятся более плотными), что проявляется в резком увеличении скорости проведения волн. Предполагается, что базальтовые породы в районе границы Мохоровичича превращаются в эклогит. При этом происходит увеличение плотности мантии примерно на 30 %. Есть и другая версия, согласно которой, причина изменения скорости проведения сейсмических волн кроется в изменении состава пород.

В 2005 году в Японии было построено специально оборудованное судно Chikyu. Его миссия — сделать рекордно глубокую скважину на дне Тихого океана. Ученые предполагают взять образцы пород верхней мантии и границы Мохоровичича, чтобы получить ответы на многие вопросы, связанные со строением планеты. Реализация проекта намечена на 2020 год.

Нужно отметить, что ученые не просто так обратили свой взор именно к океаническим недрам. Согласно исследованиям, толщина коры на дне морей значительно меньше, чем на континентах. Разница существенная: под толщей воды в океане до магмы нужно преодолеть в отдельных областях всего 5 км, тогда как на суше эта цифра увеличивается до 30 км.

Сейчас судно уже работает: получены образцы глубоких угольных пластов. Реализация главной цели проекта позволит понять, как устроена мантия Земли, какие вещества и элементы составляют ее переходную зону, а также выяснить нижний предел распространения жизни на планете.


Наше представление о строении Земли пока далеко не полное. Причина тому — сложность проникновения в недра. Однако технический прогресс не стоит на месте. Достижения науки позволяют предположить, что в недалеком будущем мы будем знать о характеристиках мантии гораздо больше.

Источник: FB.ru

Силикатная оболочка Земли, её мантия, расположена между подошвой земной коры и поверхностью земного ядра на глубинах около 2 900 км. Обычно по сейсмическим данным мантию делят на верхнюю (слой В), до глубины 400 км, переходный слой Голицына (слой С) в интервале глубин 400-1000 км и нижнюю мантию (слой D) с подошвой на глубине примерно 2 900 км. Под океанами в верхней мантии выделяется ещё и слой пониженных скоростей распространения сейсмических волн — волновод Гутенберга, обычно отождествляемый с астеносферой Земли, в которой мантийное вещество находится в частично расплавленном состоянии. Под континентами зона пониженных скоростей, как правило, не выделяется либо слабо выражена.

В состав верхней мантии обычно включаются и подкоровые части литосферных плит, в которых мантийное вещество охлаждено и полностью раскристаллизовано. Под океанами мощность литосферы меняется от нуля под рифтовыми зонами до 60-70 км под абиссальными котловинами океанов. Под континентами толщина литосферы может достигать 200-250 км.


Наши сведения о строении мантии и земного ядра, а также о состоянии вещества в этих геосферах получены в основном по сейсмологическим наблюдениям, путём интерпретации годографов сейсмических волн с учётом известных уравнений гидростатики, связывающих между собой градиенты плотности и значения скоростей распространения продольных и поперечных волн в среде. Методика эта была разработана известными геофизиками Г. Джефрисом, Б. Гутенбергом и особенно К. Булленом ещё в середине 40-х годов и затем существенно усовершенствована К. Булленом и другими сейсмологами. Построенные по этой методике распределения плотности в мантии для нескольких наиболее популярных моделей Земли в сопоставлении с данными ударного сжатия силикатов (модель НС-1) приведены на рис. 10.

Как видно из рисунка, плотность верхней мантии (слоя В) с глубиной увеличивается от 3,3-3,32 примерно до 3,63-3,70 г/см3 на глубине около 400 км. Далее в переходном слое Голицына (слое С) градиент плотности резко возрастает и плотность повышается до 4,55-4,65 г/см3на глубине 1 000 км. Слой Голицына постепенно переходит в нижнюю мантию, плотность которой плавно (по линейному закону) возрастает до 5,53-5,66 г/см3 на глубине её подошвы около 2 900 км.

Увеличение плотности мантии с глубиной объясняется уплотнением её вещества под влиянием все возрастающего давления вышележащих мантийных слоев, достигающего на подошве мантии значений 1,35-1,40 Мбар.


обенно заметное уплотнение силикатов мантийного вещества происходит в интервале глубин 400-1000 км. Как показал А. Рингвуд, именно на этих глубинах многие минералы испытывают полиморфные превращения. В частности, наиболее распространённый в мантии минерал оливин приобретает кристаллическую структуру шпинели, а пироксены — ильменитовую, а затем и плотнейшую перовскитовую структуру. На ещё больших глубинах большинство силикатов, за исключением, вероятно, только энстатита, распадаются на простые окислы с плотнейшей упаковкой атомов в соответствующих им кристаллитах.

Факты движения литосферных плит и дрейфа континентов убедительно свидетельствуют о существовании в мантии интенсивных конвективных движений, неоднократно перемешивавших за время жизни Земли все вещество этой геосферы. Отсюда можно сделать вывод, что составы и верхней и нижней мантии в среднем одинаковые. Однако состав верхней мантии уверенно определяется по находкам ультраосновных пород океанической коры и составам офиолитовых комплексов. Изучая офиолиты складчатых поясов и базальты океанических островов, А. Рингвуд ещё в 1962 г. предложил гипотетический состав верхней мантии, названный им пиролитом, получаемый при смешении трёх частей альпинотипного перидотита — габсбургита с одной частью гавайского базальта. Пиролит Рингвуда близок по составу к океаническим лерцолитам, подробно изученным Л.В. Дмитриевым (1969, 1973). Но в противоположность пиролиту океанический лерцолит является не гипотетической смесью пород, а реальной мантийной породой, поднявшейся из мантии в рифтовых зонах Земли и обнажающейся в трансформных разломах вблизи от этих зон.


тому же Л. В. Дмитриев показал комплиментарность океанических базальтов и реститовых (остаточных после выплавки базальтов) гарцбургитов по отношению к океаническим лерцолитам, доказав тем самым первичность лерцолитов, из которых, следовательно, выплавляются толеитовые базальты срединно-океанических хребтов, а в остатке сохраняется реститовый гарцбургит. Таким образом, ближе всего составу верхней мантии, а следовательно, и всей мантии соответствует описанный Л. В. Дмитриевым океанический лерцолит, состав которого приведён в табл. 1.



Таблица 1. Состав современной Земли и первичного земного вещества
По А. Б. Ронову и А. А. Ярошевскому (1976); (2) Наша модель с использованием данных Л. В. Дмитриева (1973) и А. Рингвуда (Ringwood, 1966); (3) H. Urey, H. Craig (1953); (4) Флоренский К. П., Базилевский Ф. Т. и др., 1981.
Окислы Состав континентальной коры(1) Модельный состав мантии Земли(2) Модельный состав ядра Земли Состав первичного вещества Земли (расчёт) Средний состав хондритов(3) Средний состав углистых хондритов(4)
SiO2 59,3 45,5 30,78 38,04 33,0
TiO2 0,7 0,6 0,41 0,11 0,11
Al2O3 15,0 3,67 2,52 2,50 2,53
Fe2O3 2,4 4,15
FeO 5,6 4,37 49,34 22,76 12,45 22,0
MnO 0,1 0,13 0,09 0,25 0,24
MgO 4,9 38,35 25,77 23,84 23,0
CaO 7,2 2,28 1,56 1,95 2,32
Na2O 2,5 0,43 0,3 0,95 0,72
K2O 2,1 0,012 0,016 0,17
Cr2O3 0,41 0,28 0,36 0,49
P2O5 0,2 0,38
NiO 0,1 0,07
FeS 6,69 2,17 5,76 13,6
Fe 43,41 13,1 11,76
Ni 0,56 0,18 1,34
Сумма 100,0 100,0 100,0 100,0 99,48 98,39

Кроме того, признание существования в мантии конвективных движений позволяет определить и её температурный режим, поскольку при конвекции распределение температуры в мантии должно быть близким к адиабатическому, т.е. к такому, при котором между смежными объёмами мантии не происходит теплообмена, связанного с теплопроводностью вещества. В этом случае теплопотери мантии происходят только в её верхнем слое — через литосферу Земли, распределение температуры в которой уже резко отличается от адиабатического. Но адиабатическое распределение температуры легко рассчитывается по параметрам мантийного вещества.

Для проверки гипотезы о едином составе верхней и нижней мантии были проведены расчёты плотности океанического лерцолита, поднятого в трансформном разломе хребта Карлсберг в Индийском океане, по методике ударного сжатия силикатов до давлений около 1,5 Мбар. Для такого «эксперимента» вовсе не обязательно сжимать сам образец породы до таких высоких давлений, достаточно знать его химический состав и результаты ранее проведённых опытов по ударному сжатию отдельных породообразующих окислов. Результаты такого расчёта, выполненного для адиабатического распределения температуры в мантии, были сопоставлены с известными распределениями плотности в этой же геосфере, но полученными по сейсмологическим данным (см. рис. 10). Как видно из приведённого сравнения, распределение плотности океанического лерцолита при высоких давлениях и адиабатической температуре неплохо аппроксимирует реальное распределение плотности в мантии, полученное по совершенно независимым данным. Это свидетельствует в пользу реальности сделанных предположений о лерцолитовом составе всей мантии (верхней и нижней) и об адиабатическом распределении температуры в этой геосфере. Зная распределение плотности вещества в мантии, можно подсчитать и её массу: она оказывается равной (4,03-4,04)×102 г, что составляет 67,5% от общей массы Земли.

На подошве нижней мантии выделяется ещё один мантийный слой толщиной около 200 км, обычно обозначаемый символом D’’, в котором уменьшаются градиенты скоростей распространения сейсмических волн и возрастает затухание поперечных волн. Более того, на основании анализа динамических особенностей распространения волн, отражённых от поверхности земного ядра, И.С. Берзон и её коллегам (1968, 1972) удалось выделить тонкий переходный слой между мантией и ядром толщиной около 20 км, названный нами слоем Берзон, в котором скорость поперечных волн в нижней половине убывает с глубиной от 7,3 км/с практически до нуля. Снижение же скорости поперечных волн можно объяснить лишь уменьшением значения модуля жёсткости, а следовательно, и уменьшением коэффициента эффективной вязкости вещества в этом слое.

Сама граница перехода от мантии к земному ядру при этом остаётся достаточно резкой. Судя по интенсивности и спектру отражённых от поверхности ядра сейсмических волн, толщина такого пограничного слоя не превышает 1 км.

Источник: gemp.ru

Строение мантии ученые могут только предполагать, так как методов, которые бы однозначно дали ответ на данный вопрос, пока что не существует. Но, проведенные исследования дали возможность предположить, что данный участок нашей планеты состоит из таких слоев:

  • первый, наружный – он занимает от 30 до 400 километров земной поверхности;
  • переходная зона, которая расположена сразу за наружным слоем – по предположениям ученых она уходит вглубь примерно на 250 километров;
  • нижний слой – его протяжность самая большая, около 2900 километров. Он начинается сразу после переходной зоны и идет прямо к ядру.

Следует отметить, что в мантии планеты есть такие горные породы, которых нет в земной коре.

Само собой, что точно установить из чего состоит мантия нашей планеты, нельзя, так как добраться туда невозможно. Поэтому, все, что удается изучить ученым, происходит при помощи обломков этого участки, которые периодически появляются на поверхности.

Так, после ряда исследований удалось выяснить, что этот участок Земли черно-зеленого цвета. Основной состав — это горные породы, которые состоят из таких химических элементов:

  • кремний;
  • кальций;
  • магний;
  • железо;
  • кислород.

По внешнему виду, а в чем-то даже и по составу, она очень похожа на каменные метеориты, которые также периодически попадают на нашу планету.

Вещества, которые находятся в самой мантии, жидкие, вязкообразные, так как температура на данном участке превышает тысячи градусов. Ближе к коре Земли температура снижается. Таким образом, происходит некоторый круговорот – те массы, которые уже охладились, спускаются вниз, а разогретые до предела попадают наверх, поэтому процесс «смешивания» никогда не прекращается.

Периодически, такие разогретые потоки попадают в самую кору планеты, в чем им оказывают содействие действующие вулканы.

Само собой разумеется, что слои, которые находятся на большой глубине достаточно сложно изучать и не только потому, что не такой техники. Усложняется процесс еще и тем, что температура практически постоянно повышается, а вместе с тем возрастает и плотность. Поэтому, можно сказать, что глубина нахождения слоя, является наименьшей проблемой, в этом случае.

Вместе с тем, ученым все же удалось продвинуться в изучении данного вопроса. Для исследования этого участка нашей планеты, главным источником информации были выбраны как раз геофизические показатели. Кроме этого, в ходе исследования, ученые используют и такие данные:

  • скорость сейсмических волн;
  • сила тяжести;
  • характеристики и показатели электропроводности;
  • изучение магматических пород и обломков мантии, которые редко, но все же удается найти на поверхности Земли.

Что касается последнего, то здесь особенного внимания ученых заслуживают именно алмазы – по их мнению, изучая состав и строение этого камня, можно выяснить много интересного даже о нижних слоях мантии.

Изредка, но встречаются мантийные породы. Их изучение также позволяет добыть ценную информацию, но в той или иной степени все же будут присутствовать искажения. Обусловлено это тем, что в коре происходят различные процессы, которые несколько отличаются от тех, которые происходят в глубинах нашей планеты.

Отдельно следует рассказать о технике, при помощи которой ученые пытаются достать оригинальные породы мантии. Так, в 2005 году в Японии было возведено специальное судно, которое, по мнению самих разработчиков проекта, сможет сделать рекордно глубокую скважину. На данный момент работы еще идут, а старт проекта намечен уже на 2020 год – ждать осталось не так уж и много.

Сейчас же все изучения строения мантии происходят в рамках лаборатории. Ученые уже точно установили, что нижний слой этого участка планеты, практически весь состоит из кремния.

Распределение давления в пределах мантии неоднозначно, собственно как и температурного режима, но обо всем по порядку. На долю мантии приходится больше половины веса планеты, а если сказать точнее, то 67%. В участках под земной корой давление составляет около 1,3-1,4 млн.атм., при этом, следует отметить, что в местах, где расположены океаны, уровень давления существенно спадает.

Что же касается температурного режима, то здесь данные вовсе неоднозначны и базируются только на теоретических предположениях. Так, у подошвы мантии предполагается температура в 1500-10 000 градусов по Цельсию. В целом, ученые предположили, что температурный уровень на данном участке планеты более близок к температуре плавления.

Источник: ECOportal.info

Мантия располагается на глубинах менее 2900 км. Она делится на три слоя: нижнюю, среднюю и верхнюю. В верхней мантии, на глубинах порядка 60-250 км, преобладают базальты, находящиеся в состоянии расплава или близком к этому. В этом слое вязкость вещества и его прочность на два-три порядка величины меньше, чем вязкость и прочность вышележащего жесткого слоя. Слой пониженной вязкости называется астеносферой (от греч. астенес — слабый).[ …]

Мантия Земли представляет собой силикатную оболочку между ядром и подошвой литосферы. Поданным О.Г. Сорохтина (1994), масса мантии составляет 67,8 % от общей массы Земли. Мантия подразделяется на верхнюю (до глубины я 400—1000 км) и нижнюю (до глубины около 2900 км). Под океанами в верхней мантии выделяется слой, в котором вещество находится в частично расплавленном состоянии.[ …]

Мантия — это мощная оболочка Земли, залегающая ниже земной коры. Граница между ними проходит по линии Мохоровичича (Мохо), по которой скорость сейсмических волн скачкообразно возрастает с 6—6,5 до 8,2 км/с. По скорости прохождения сейсмических волн собственно мантию подразделяют на 3 зоны: верхнюю, среднюю и нижнюю. Верхняя мантия, называемая часто субстратом, вместе с земной корой образует литосферу — самую жесткую оболочку Земли, ниже которой находится близкий к расплавлению слой пониженной прочности — астеносфера. В нижней мантии температура достигает 3000 “С, а давление — 1 млн атм, под влиянием которого происходят активные метаморфические процессы. До сих пор нет достоверных материалов о составе пород мантии. Предположительно это рудная оболочка с включением сильно метаморфизованных минералов и пород, имеющих особенно плотную кристаллическую упаковку.[ …]

Мантия — подкоровая оболочка, идущая, по К. Е. Буллену (1978), на глубину до 2900 км. Она делится на верхнюю толщиной около 900 км и нижнюю толщиной около 2000 км мантии. Вещество мантии твердое, и, судя по немногим находкам его на дне океана, оно представлено породами ультраосновного и основного составов.[ …]

У нижней границы земная кора на глубинах 40—120 км приобретает пластический характер из-за большого давления и высоких температур. Здесь резко возрастают скорости распространения сейсмических волн. Это явление впервые в 1909 г. обнаружил югославский сейсмолог А. С. Мохоровичич. Его именем названа нижняя граница земной коры. Ниже расположено подкорковое вещество, которое по физическим свойствам одинаково как под океанами, так и под материками. Эту однородную оболочку называют мантией.[ …]

БАЗАЛЬТОВЫЙ СЛОЙ —■ нижний слой земной коры, расположенный между гранитным слоем и верхней мантией Земли.[ …]

Ниже литосферы находится мантия — верхняя (до глубины 966 км) и нижняя (до глубины 2898 км). В верхней мантии содержатся оливины, прочные шпинели, оксиды магния и алюминия, в нижней — металлоподобные вещества повышенной прочности.[ …]

Уменьшение плотности пород в нижних горизонтах коры и верхних горизонтах подкоровой мантии, вызванное частичной серпентинизацией перидотитов, может приводить к изостатическому всплыванию бортов рифтовой зоны на несколько сотен метров [255], которое будет сохраняться в рельефе фундамента и при дальнейшей эволюции палеоспредингового хребта. Объем перидотитов при их серпентинизации увеличивается на 15-20% [45] так, что при значительной инверсии плотности возможно выжимание серпентинитов по трещинам вплоть до поверхности дна, как в зонах трансформных разломов (см. раздел 3.3) [47].[ …]

Основным источником движений в мантии считается генерация тепла радиоактивными элементами, которые могут быть сосредоточены как в самой верхней мантии, так и в нижней мантии [1-4]. В [1] описаны результаты большого количества численных экспериментов по моделированию конвекции в верхней мантии, выполненных в двумерном приближении при разных значениях скорости выделения тепла и при различных типах распределений источников тепла: внутри слоя, частично внутри, а частично при задании потока тепла на нижней границе и при задании всего потока тепла только снизу. Аналогичные расчеты, в том числе с вязкостью, зависящей от температуры Т и давления р, описаны в [3]. В основной серии расчетов [1] суммарный ввод тепла задавался так, чтобы его средняя плотность потока равнялась среднему геотермическому потоку тепла / = 0,06 Вт/м1. Рассчитанные поля скорости оказались порядка наблюдаемых скоростей плит.[ …]

Ниже, до глубины 2900 км, располагается мантия Земли. Мантия Земли разделяется на верхнюю до глубины 950 км и нижнюю до 2900 км, характеризуется более однородным строением и непрерывным (по мере углубления) возрастанием плотности вещества от 3,5 до 5,6 г/см3, а также повышением температуры. На долю мантии приходится 41% массы Земли.[ …]

Выше переходной зоны была выделена верхняя мантия, а ниже — нижняя мантия.[ …]

Скорость V распространения упругих волн по толщине мантии по мере движения от периферии к центру нарастает неравномерно: значительно быстрее в верхней части до глубин Z = 900—1000 км и очень медленно на больших глубинах (рис. 7.2). В связи с этим мантию чаще всего делят на верхнюю и нижнюю, а иногда дополнительно выделяют среднюю мантию.[ …]

Океанская кора представляет собой верхний дифференцированный слой мантии, перекрытый сверху тонким слоем пелагических осадков. Океанская кора состоит из трех слоев. Слой 1 лежит непосредственно под морской водой, средняя толщина водного слоя 4,5 км, скорость Р-волн в нем 1,5 км/с. Скорость Р-волн в слое 1, образованном пелагическими осадками, составляет 1,6-2,5 км/с, его средняя толщина 0,4 км. Слой 2 в верхней части сложен подушечными лавами толеитовых базальтов океанского типа (слой 2а), ниже располагаются долеритовые дайки того же состава (слой 26). Скорость Р-волн в слое 2 изменяется от 4 до 6 км/с, средняя толщина составляет 1,5 км. Верхняя часть слоя 3 сложена габбро, нижняя часть — серпентинитами. Скорость Р-волн в слое 3 составляет 6,4-7,0 км/с, его средняя толщина 5 км. Таким образом, общая толщина (или мощность) океанской коры 7 км.[ …]

Иная картина развивается под мощными континентальными плитами, погруженными в мантию на глубину до 200-250 км. Под ними слой астеносферы практически отсутствует или сильно вырожден. Поэтому под континентальными плитами должно наблюдаться более равномерное распределение вязкости, и горизонтальные составляющие конвективных течений под ними формируются в гораздо большем объеме средней и нижней мантии. Но в связи со значительно большими сечениями горизонтальных потоков под континентальными плитами их скорости оказываются соответственно более низкими (порядка единиц сантиметров в год). Скорее всего этим и объясняются значительно меньшие скорости дрейфа континентов, особенно крупных (прочно «зацепленных» с мезосферой Земли) и спаянных с ними океанических плит по сравнению со скоростями движения чисто океанических плит, особенно расположенных между восходящими и нисходящими потоками в мантии.[ …]

Мангия — промежуточная оболочка, расположенная между литосферой и ядром Земли. Нижняя ее граница проходит предположительно на глубине 2900 км. На мантию приходится более половины объема Земли. Вещество мантии находится в перегретом состоянии и испытывает огромное давление вышележащей литосферы. Мантия оказывает большое влияние на процессы, происходящие на Земле. В верхней мантии возникают магматические очаги, образуются руды, алмазы и другие ископаемые. Отсюда же на поверхность Земли поступает внутреннее тепло. Вещество верхней мантии постоянно и активно перемещается, вызывая движение литосферы и земной коры.[ …]

Достаточно детально сейсмическими и другими геофизическими методами изучена верхняя мантия Земли. Эта часть Земли наиболее доступна для геофизического изучения и наиболее важна для жизни человечества. Верхняя мантия простирается от границы Мохо до глубины 400 км. В состав верхней мантии входит нижняя часть литосферы и верхняя часть астеносферы. Литосфера представляет собой каменную (твердую и прочную) верхнюю оболочку Земли. Ее толщина меняется от 50 до 150 км в разных регионах Земли, следовательно, литосфера включает земную кору и часть верхней мантии, в которой мантийное вещество настолько остыло, что превратилось в горную породу.[ …]

Прибор состоит из деревянного футляра 1, гребенки 2, трех поглотительных сосудов 3, 4 и 5, сосуда-мантии 6, сосуда-фильтра 7, уравнительной склянки 8, тройника 9 с баллоном-мешочком 11, всасывающего баллона 12. В сосуде-мантии 6 установлена бюретка 14. Поглотительные сосуды соединены резиновыми трубками со средними кранами гребенки, сосуд-фильтр 7 соединен через изогнутую трубку с левым краном, а нижний отвод его с помощью соединительной трубки 13 со штуцером 10, сосуд-бюретка соединена с правым краном гребенки и с уравнительной склянкой 8.[ …]

Астеносфера (от греч. ав епеБ — слабый и сфера), слой пониженной твердости, прочности и вязкости в верхней мантии Земли. Расположен на глубинах около 100 км под континентами и около 50 км под дном океана; нижняя его граница находится на глубинах 250 — 350 км. Не исключена прерывистость слоя. Вязкость вещества астеносферы 1019—1023 пз, ниже и выше границ астеносферы они не менее 1023 пз. Предполагается, что в пределах астеносферы, в связи с низким пределом текучести, происходит медленное перетекание масс в горизонтальном направлении под влиянием неравномерной нагрузки со стороны земной коры. Наличие астеносферы объясняется высоким геотермическим градиентом, высокой температурой вещества астеносферы, близкой к температуре плавления, и процессами релаксации. В пределах астеносферы лежат обычно очаги питания вулканов и осуществляется перемещение подкорковых масс, которые сопровождаются изменением формы залегания, объема, внутренней структуры и взаимного расположения тел горных пород. Эти изменения происходят под действием глубинных сил Земли, порождающие в земной коре условия местного направленного или всестороннего растяжения, сжатия или сдвига, так называемые тектонические процессы.[ …]

Размером немного меньше вороны, массой — с голубя. В брачном оперении голова темно-коричневая, издали кажется черной. Мантия светло-серая. Клюв и ноги темно-красные. От малой чайки отличается размерами; кроме того, темное оперение на голове не захватывает затылок, нижняя поверхность крыла не черная, темные только концы крыльев. В осеннем оперении на голове остается темной только «сережка» и могут быть еще небольшие «помарки».[ …]

Средняя мощность геосферы — 55 км. За ее верхнюю границу принимают тропопаузу — переходный слой от тропосферы к стратосфере (12—18 км), за нижнюю — границу земной коры с мантией (до глубины 4—5 км). Гидросфера и биосфера полностью включены в состав геосферы (рис. 1.29).[ …]

В ходе моделирования истории развития Лабрадорского хребта была проведена оценка влияния процесса серпентинизации перидотитов верхней мантии. Г.Хесс [290] предположил, что низы третьего слоя океанической коры образуются в результате гидратации перидотитов мантии при охлаждении ниже температуры 500° С. В дальнейшем проблема серпентинизации ультраосновных пород в океанической коре не раз обсуждалась в литературе [74, 11, 47]. А.В.Пейве отмечал, что в океанической коре, в зоне раздела Мохоровичича, происходят мощные процессы гидротермальной переработки пород верхней части мантии и мафической части нижней коры. Подчеркивая важную роль серпентинитов в структуре океанической коры, он полагал, что серпентинизацией затронуты все породы на глубинах, где температура не превышает 500-550° С [95].[ …]

Важные сведения о неупругих свойствах глубоких частей Земли получаются из наблюдений затухания собственных колебаний. Если принять, что механическая добротность вещества мантии С не зависит от частоты, то значения ф, получающиеся по наблюдениям, показывают, что для нижних частей мантии ф больше, чем для верхних. Особый интерес представляет чрезвычайно большое С > 25 000 для колебаний о£о- Из этого факта делается вывод о том, что поглощение упругих волн происходит в основном вследствие деформации сдвига.[ …]

В строение Земли, как это следует из рнс.1, принимают участие восемь слоев, три из которых представляют внутреннее и внешнее ядро с переходной областью, четыре слоя соответствуют нижней и верхней мантии и один слой представляет земную кору. В таблице I приведены сведения об интервалах глубин, отвечающих тому или иному слою, о скоростях прохождения в слоях упругих сейсмических волн, плотности вещества, температуре и давлении, а также о доле каждого из слоев в общей массе Земли.[ …]

В отличие от современных условий молодая Земля, как уже отмечалось, была существенно более холодной, лишенной астеносферы и ядра, а также характеризовалась отрицательным градиентом температуры в нижней мантии. Поэтому в те далекие времена механическая добротность Земли в ее глубинных недрах скорее всего существенно превышала фактор добротности современной литосферы. Однако следует учитывать, что на приливное взаимодействие планет в основном влияют слои с наименьшими значениями фактора добротности. Учитывая это для определенности расчетов, принималось, что в течение всего катархея, т.е. периода от момента образования Земли приблизительно 4,6 млрд лет назад и вплоть до начала развития в ней геологических процессов в самом начале архея, около 4 млрд. лет назад, значение приливного фактора добротности Земли равнялось 1500 [120].[ …]

Здесь угловые скобки — осреднение по горизонтали, штрихи означают отклонения величины от ее среднего. При р = 104 кг/ж и д = = 10 м/с2 от сюда получаем т = 10-9 кг/(м2 • с) = 3 • 10-2 кг/ м2 х х год). Если вся эта величина определяется дифференциацией на нижней границе мантии, то ее скорость движения вверх будет т/р, что в нашем случае составит 3 • 10 6 м/год, т. е. 3 км за миллиард лет.[ …]

В круговороте углерода определенную роль играют СО и СОг Часто в биосфере Земли углерод представлен наиболее подвижной формой С02. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная вековой дегазацией мантии и нижних горизонтов земной коры.[ …]

Многие природные данные свидетельствуют в пользу того, что зона волновода является зоной, ослабленной в механическом смысле и, в частности, слабо сопротивляющейся сдвиговым напряжениям. Поэтому она допускает движение литосферы относительно нижней мантии. Как отмечалось, наиболее вероятной причиной поведения астеносферы под океанами одновременно и как ослабленной зоны, и как зоны пониженных скоростей сейсмических волн является наличие в ней частично расплавленного вещества мантии. Анализ изменения добротности в астеносфере под океаном свидетельствует о том, что процент расплава вне срединных хребтов ниже, чем под хребтами, и доля плавления в пределах 1-10% хорошо объясняет наблюдаемые значения затухания сейсмических волн в астеносфере под океаном и под внутриконтинен-тальными рифтовыми областями. Эти выводы основаны на результатах лабораторных исследований затухания сейсмических волн в расплавах с различной степенью плавления [518].[ …]

Земная кора — твердая внешняя оболочка Земли толщиной до 70 км в горных областях, около 30 км под равнинами, 5—7 км под океанами. Верхняя часть земной коры — осадочный слой, он состоит из осадочных пород, средняя — «гранитный» слой (выражен только на материках), нижняя — «базальтовый» слой. Под земной корой располагается мантия (толщиной около 2900 км). Занимает 83% Земли (без атмосферы) по объему и 67% по массе. Мантия Земли состоит, видимо, преимущественно из тяжелых минералов, богатых магнием и железом. С процессами, происходящими в верхней (граничащей с земной корой) мантии Земли, тесно связаны тектонические движения, вулканизмы, горнообразование и др.[ …]

Литосфера — твердая оболочка Земли, толщина которой колеблется в пределах от 50 до 200 км. Суша занимает около 29% поверхности земного шара. Верхняя часть литосферы образует земную кору, толщина которой на континентах доходит до 50…75 км, под дном океанов — 5… 10 км, а нижняя — верхнюю часть мантии Земли. Граница между этими частями литосферы определяется по скачку в изменении скорости распространения продольных и поперечных упругих сейсмических волн (так называется граница Мохоровичича, или поверхность М).[ …]

В архее приливная добротность Земли, как и в фанерозое, должна была быть достаточно низкой по двум причинам. Во-первых тогда сами океаны еще были мелкими и в них рассеивалась значительная часть приливной энергии и, во-вторых, в архее уже происходило расплавление нижней мантии (во всяком случае на низких широтах) с существенным ее перегревом. Учитывая теперь неразрывность процесса отодвигания Луны от Земли, и связывая его воедино в катархее, архее, протерозое и фанерозое, найдем, что в архее фактор приливной добротности Земли в среднем равнялся 26.[ …]

Сильная отрицательная обратная связь возникает за счет теплопотерь Земли. Так, с увеличением скорости конвективного массообмена возрастают тепловые потоки через океанское дно, увеличиваются общие потери тепла Землей, благодаря этому уменьшается температура мантии, повышается вязкость ее вещества, что, в свою очередь приводит к снижению конвективного массообмена в мантии. Другой механизм отрицательной обратной связи заложен в самом процессе бародиффузионной дифференциации мантийного вещества. Действительно, диффузия окислов железа из кристаллов силикатов в межгранулярные пространства происходит только в нижней мантии на глубинах превышающих 2000 км. Поэтому чем выше скорость конвекции, тем меньшее время мантийное вещество будет пребывать в деятельном слое нижней мантии, тем меньше за это время “ядерного” вещества успеет диффундировать из кристаллов силикатов и перетечь в земное ядро, а замедление процесса дифференциации неизбежно приведет к снижению скорости и самой конвекции.[ …]

В подземных водах пластовых водонапорных систем существуют три источника газов: газы, захваченные из воздуха; газы, генерируемые в осадочных породах (в результате деструкции ОВ пород, процессов литогенеза, радиоактивного распада и т. д.); газы, поступающие в осадочную оболочку из нижних этажей земной коры и мантии. Поли-генность и подвижность газов в осадочных породах обусловливают образование различных газовых ассоциаций, генетичная природа которых на молекулярном уровне исследований в ряде случаев не поддается расшифровке. Более уверенно генетическую природу отделйнтах газовых компонентов можно выявлять с использованием данных по изотопному составу.[ …]

Анализ изложенных выше основных данных о Земле, ее внутреннем строении и эволюции и их сопоставление с тем, что известно об окружающем нас Космосе, показывают, что Земля является уникальной, единственной пригодной для жизни планетой не только в Солнечной системе, но и в окрестностях Солнца, которые простираются на десятки и сотни световых лет. Лик Земли, ее континенты и океаны, горы, впадины и равнины сформировались в результате сложных процессов конвекции в верхней и нижней мантии. И даже конвекция в ядре Земли оказывает влияние на мощные извержения раскаленных магм в различных точках земной поверхности. Эти процессы осуществляются в основном за счет тепловой энергии Земли, которая выделялась при гравитационном сжатии и распаде радиоактивных веществ. И в настоящее время Земля является активно эволюционирующей планетой. На определенном этапе развития Земли произошло образование океана и атмосферы.[ …]

Источник: ru-ecology.info



Вопрос 1. Что такое природа?

Природа — материальный мир, Вселенная, естественная среда обитания человека (всё, что нас окружает, за исключением созданного человеком).

Вопрос 2. Что такое литосфера?

Литосфера — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии.

Вопрос 3. Чем отличается литосфера от других оболочек Земли?

Литосферой называют твёрдую оболочку Земли. Толщина литосферы на суше в среднем колеблется от 35-40 км (на равнинных участках) до 70 км (в горных районах).

Вопрос 4. Каково значение слоев Земли для человека?

Из слоев человек добывает различные полезные ископаемые (нефть, газ), изучает движение литосферных плит, причины землетрясений и т. д.

Вопрос 5. Какие слои выделяются в строении земного шара?

Земной шар имеет слоистое строение. Он состоит из трёх основных слоёв. В центре Земли расположено ядро. Второй слой в строении Земли — мантия. Внешний слой земного шара называется земной корой.

Вопрос 6. Что нам известно о земном ядре?

В центре Земли лежит ядро радиусом около 3,5 тыс. км. Оно состоит из железа, и температура внутри ядра достигает 6000 °С.

Вопрос 7. Какова толщина мантии?

Мантия имеет толщину около 2,9 тыс. км.

Вопрос 8. Какие существуют виды земной коры?

Земная кора бывает материковой, имеющей толщину 30—80 км, и океанической — толщиной 5—10 км.

Вопрос 9. Что такое литосфера?

Литосфера — это твёрдая оболочка Земли, состоящая из земной коры и верхней мантии.

Вопрос 10. Как называются науки, изучающие внутреннее строение Земли?

Земная кора самым внимательным образом изучается специальной наукой — геологией. Более глубокими слоями Земли занимается наука под названием геофизика.

Вопрос 11. Зачем нужно изучать внутреннее строение Земли?

Строение Земли изучают, чтобы найти полезные ископаемые. Строение Земли помогает понять происхождение таких явлений как оползни, извержения вулканов, землетрясения.

Вопрос 12. Какая оболочка занимает больший объём Земли?

Мантия составляет 83 % объема Земли (без атмосферы) и 67 % ее массы.

Вопрос 13. Чем отличается океаническая земная кора от материковой?

Самая толстая земная кора лежит под материками, под океанами её толщина – 5—10 км.

Вопрос 14. Почему мощность литосферы больше мощности земной коры?

Потому что литосфера состоит из двух слоёв: это земная кора и верхняя часть мантии. Также у литосферы больше плотность.

Источник: resheba.me


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.