Малые гидроэлектростанции



Не рабочий механизм 

Почему инвесторы МГЭС в 2013-2019 годы вели себя не так активно, как девелоперы СЭС и ВЭС? По словам ведущего эксперта УК «ФИНАМ Менеджмент» Дмитрия Баранова, причиной действительно могли стать высокие CAPEX, особенно в сравнении с другими ВИЭ. Нельзя сбрасывать со счетов и экологический фактор, а также не снижающий оборотов процесс строительства потребителями на местах собственной генерации. Юрий Мельников из «СКОЛКОВО» тоже констатирует, что «ручной» механизм поддержки ВИЭ через установление предельных капзатрат и квот в реальности оказался недостаточно сбалансирован в отношении МГЭС. И давал инвесторам больше стимулов уходить в солнце и ветер: «Там их мог привлечь большой потенциал снижения стоимости и, соответственно, роста рынка СЭС и ВЭС, тогда как малые ГЭС находятся уже в конце «кривой обучения», потенциал снижения стоимости там невелик и ограничен развитием технологий строительства». 

«Возможно, по той же причине доля гидроэнергетики в различных странах, развивающих ВИЭ – от Евросоюза и США до Китая и Индии – в последние 10 лет не растет на фоне быстрого роста солнца и ветра в энергобалансе», — говорит Мельников.


рочем, в большинстве этих стран гидропотенциал уже давно освоен – на 70-80-90%. Грубо говоря, там уже построили все ГЭС, в том числе малые, какие только было можно. В России же, как известно, гидропотенциал освоен всего на 20%. Что касается высоких CAPEX малых ГЭС (кстати, на самом деле вполне сопоставимых со среднемировыми значениями), то солнце и ветер внутри России тоже стоят сильно дороже иностранных аналогов – хотя в масштабах нашей страны падение стоимости капзатрат в этих сегментах за минувшие годы действительно выглядит достижением космического масштаба. 

Известно, что при относительно высоких капзатратах гидроэнергетика характеризуется более низкими OPEX (в пересчете на единицу мощности), в несколько раз более длительным сроком службы сооружений и оборудования относительно других ВИЭ (до 100 лет!) и более высоким КИУМ (на уровне 40%, при 18% у ВЭС и 14% у СЭС). В том числе и поэтому в гидроэнергетике фиксируются наименьшие показатели LCOE (нормированной̆ стоимости электроэнергии) относительно других возобновляемых источников. По данным IRENA, говорит Юрий Мельников, малые ГЭС в мире по этому показателю – 3-12 центов США за кВт*час – вполне конкурентоспособны с солнечными и ветровыми электростанциями. 


Поэтому главный фактор, повлиявший на активность инвесторов в рамках первого инвестцикла ДПМ ВИЭ, на самом деле банален и прозаичен. «Инжиниринг МГЭС (от изысканий до пуска) – существенно более затратное и сложное дело, чем инжиниринг СЭС и ВЭС», — подчеркивает Мельников.

«Объективный̆ временной̆ цикл разработки ТЭО проекта МГЭС, изучения гидропотенциала составляет от одного до трех лет, ведь требуется проведение большого объема исследовательских работ, включающих изучение гидрологических, геологических, микроклиматических, экологических, инфраструктурных и других исходных условий. Для каждого потенциального створа малых ГЭС проводятся расчеты, позволяющие определить энергетические, технические и финансовые характеристики потенциальных объектов. Просто для сравнения: для изучения солнечного потенциала достаточно фондовых метеоданных и одного месяца исследований, а ветрового – наблюдений от шести до 12 месяцев», — развивает тему Артур Алибеков, исполнительный директор компании «EcoEnergy» и руководитель проекта «Самурский энергетический кластер» (в рамках которого в Дагестане планируется построить до 300 МВт малой гидрогенерации). 

Генеральный директор En+ Group Владимир Кирюхин выделяет еще одну причину – в России просто нет готовых наработок по потенциальным створам МГЭС; в отличие от створов для крупных станций, которые в советские годы изучили вдоль и поперек. «Трудоемкость реализации проекта малой ГЭС практически такая же, как для крупной», подчеркивает Кирюхин, «а риск ошибки гораздо выше, чем у проектов СЭС и ВЭС: приняв на себя по итогам отбора обязательства по строительству, изменить локацию станции будет уже невозможно, в отличие от проектов в солнце и ветре, где найти новую площадку под проект гораздо легче».


этом плане одностадийный отбор проектов ДПМ ВИЭ был для инвесторов в МГЭС однозначно рискованным – на конкурсы можно было выходить только с серьезно проработанными проектами. Как отмечает Артур Алибеков, именно такие заявки в прошедшие годы и выставлялись, потому их и оказалось так мало. 

Были и менее заметные «ограничители». Как рассказал «Кислород.ЛАЙФ» эксперт, близкий к одному из инвесторов МГЭС, действующий механизм поддержки позволяет только русловую компоновку ГЭС с использованием лишь поворотно-лопастных турбин. Кроме того, если девелоперы в солнце и ветер вынуждены были (для обеспечения локализации) создать собственные технологические цепочки, включая новые производства оборудования (как сделала та же ГК «Хевел», построившая огромный завод солнечных панелей в Чувашии), то в сегменте МГЭС производители в России уже были – но самостоятельные. А действующие требования к локализации оборудования эту особенность малой гидроэнергетики не учитывают (на новом инвестцикле, кстати, предлагается еще и прописать обязательный рост экспортных поставок такой продукции!). Не стоит забывать и про кадровую проблему – специалисты в гидроэнергетике в России исторически были сконцентрированы в паре-тройке известных компаний. Качественные заявки независимым игрокам рынка просто некому было писать. 


Все эти тонкости прекрасно известны тем, кто имеет доступ к «внутренней кухне» ДПМ ВИЭ. Остальные же видят только то, что на поверхности – то есть однозначную невостребованность МГЭС инвесторами. И делают вывод, что такие станции никому не интересны. Этим пользуются инвесторы СЭС и ВЭС, мечтающие освоить оставшиеся квоты и «сесть» на стабильные денежные потоки с ОРЭМ. «Ощущается какая-то энергетическая ксенофобия. С одной стороны, топливные источники генерации с недоверием относятся ко всем ВИЭ, что неправильно на фоне мировых трендов в энергетике. С другой стороны, внутри сегмента ВИЭ ветровая и солнечная генерация откровенно дискриминируют малую гидроэнергетику. Между тем сектор МГЭС в стране сейчас возрождается после катастрофического упадка, который длился около 60 лет. А на развалинах строить сложнее, чем с нуля», — сетует Артур Алибеков.

Источник: kislorod.life

Свободный ресурс

К малой гидроэнергетике принято относить гидроэнергетические объекты разного типа с установленной мощностью менее 25 МВт, в том числе совсем небольшие – микроГЭС мощностью от 3 до 100 кВт. Использование гидроэлектростанций таких мощностей для нашей страны – далеко не новое явление: в 1950–1960-х гг. в СССР действовало более шести тысяч подобных станции. Сегодня же в России их насчитывается всего несколько сотен, что явно меньше наших возможностей и потребностей.


Принципиально важно отметить, что в малой гидроэнергетике нет необходимости строить крупные гидротехнические сооружения и затапливать большие территории водохранилищами. Маленькая станция может быть установлена практически на любой реке или даже ручье, что особенно актуально для России, где зоны децентрализованного энергоснабжения охватывают более 70% территории страны, на которой проживают около 20 млн человек. Мини-ГЭС может применяться для энергоснабжения дачных посёлков, фермерских хозяйств, хуторов, а также небольших производств в труднодоступных районах – там, где строить и содержать электрические сети невыгодно.

Малые гидроэлектростанции
Такая микроГЭС способна полностью обеспечивать
электричеством небольшой частный дом

Основные ресурсы малой гидроэнергетики России сосредоточены в горных районах республик Северного Кавказа, в Ставропольском и Краснодарском краях, на Среднем Урале, в Южной Сибири, Прибайкалье и на Дальнем Востоке.

Виды станций

Конструкция типовой малой ГЭС базируется на гидроагрегате, который включает в себя турбину, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы задействованы малыми гидростанциями, их делят на несколько категорий:
• русловые или приплотинные с небольшими искусственными водохранилищами;
• основанные на существующих перепадах уровней воды;
• использующие энергию свободного течения рек.

По величине напора выделяют низконапорные (Н < 20 м), средненапорные, (Н = 20–75 м) и высоконапорные (Н > 75 м) малые гидроэлектростанции.

Спецтурбины


Как и на крупных станциях, на малых ГЭС, используются пропеллерные, радиально-осевые и ковшовые турбины (более подробно о них см. «Энерговектор» № 5/2014 г.) соответствующих размеров и модификаций. Чаще применяются пропеллерные турбины и турбины Френсиса.

Мини-ГЭС устраивают непосредственно в потоке воды или на небольших водохранилищах, которые не могут обеспечить достаточного регулирования стока. Отсюда одна из основных проблем эксплуатации малых ГЭС – непостоянный расход воды. В период зимней и летней межени сток реки минимален, тогда как во время весеннего половодья объём воды может быть достаточно большим. По этой причине турбины, используемые на мини-ГЭС, должны быть способны работать как при минимальном, так и при максимальном стоке с наибольшей производительностью.

Малые гидроэлектростанции
Серийная ковшовая микротурбина на основе колеса Пелтона

Таким свойством обладают, например, радиальные двухкамерные проточные турбины системы Ossberger производства одноимённой немецкой компании. Стандартное соотношение размеров камер – 1:2. Малая камера предназначена для низких расходов, большая камера открывается при средних расходах (при этом малая камера закрывается). Обе камеры работают при полном расходе. В результате поток воды величиной 12–100% от расчётного максимума используется с наибольшей эффективностью (КПД более 80%), причём турбина запускается при расходе всего 6%.


Существует множество типов конструкций малых ГЭС, проектируемых с учётом различных условий применения. Конечно, охватить их все в этой статье не удастся, поэтому остановимся на некоторых оригинальных разработках.

Гирлянды и рукава

Советский инженер Б. С. Блинов изобрёл и в 1950–1960-х годах впервые применил гирляндные ГЭС для малых рек и рукавные ГЭС для малых рек и ручьёв с дебитом воды более 50 л/с. Гирляндная мини-ГЭС состоит из лёгких турбин – гидровингроторов, нанизанных в виде гирлянды на трос, который переброшен через реку. Один конец троса закреплён за ось в опорном подшипнике, второй – за ротор генератора. Трос в этом случае играет роль своеобразного вала, вращение которого передаётся к генератору. Одна гирлянда турбин (энергоблок) обеспечивает мощность от нескольких десятков ватт до 5–15 кВт. Такие энергоблоки можно объединять, заставляя их работать на общую нагрузку и повышая тем самым мощность гидростанции.

Малые гидроэлектростанции
Труба рукавной микроГЭС укладывается по склону вдоль водотока


Для устройства рукавной микроГЭС на реке или ручье строится небольшая плотина, к отверстию в которой прикрепляется труба-шланг, уложенная вниз по склону вдоль водотока до электрогенератора. Перепад высот от плотины до генератора должен быть не менее 4–5 м. Вход в «рукав» располагают так, чтобы захватить среднюю, самую быструю, часть течения реки, и воду по сужающемуся каналу подводят к турбинам. Установленная мощность такой станции может варьироваться от 1 до 100 кВт. В 70-х годах прошлого века гидроагрегаты для рукавных микроГЭС выпускались серийно на предприятиях сельхозмашиностроения.

Водоворот энергии

Интересную конструкцию для малых ГЭС в 2003 г. запатентовал изобретатель из Австрии Франц Цотлётерер. Он назвал свой проект «Технический водоворот», а мини-ГЭС – «Водоворотно-гравитационной станцией».

При строительстве станции Цотлётерера часть воды из водотока отводится в бетонный канал, проложенный вдоль береговой линии. Канал завершается бетонным цилиндром, внизу которого выполнено выпускное отверстие с жёлобом-отводом. Вода поступает в цилиндр по касательной и, подчиняясь силе гравитации, стремится вниз, закручиваясь по спирали. В центре находится турбина, её то и раскручивает водоворот (средняя скорость вращения турбины – 30 об./мин.). На водоворотной мини-ГЭС, построенной на ручье с перепадом высоты в 1,3 м и работающей при расходе воды 0,9 м3/с, мощность достигает 9,5 кВт, выработка за год – порядка 35000 кВт/ч. В такой мини-ГЭС КПД доходит до 74%.


Малые гидроэлектростанции
Водоворотно-гравитационная мини-ГЭС не повредит рыбе

Водоворотно-гравитационная ГЭС отличается от станций других видов особенно бережным отношением к биоресурсам реки: скорость вращения турбины всегда остаётся достаточно низкой, и для рыбы лопасти рабочего колеса турбины не представляют опасности. К тому же лопасти воду не рассекают, а поворачиваются вместе с потоком. Ещё один экологический плюс этого проекта – хорошая аэрация воды и перемешивание в водовороте разного рода загрязнителей. Всё это способствует более интенсивной жизнедеятельности микроорганизмов, которые естественным образом очищают воду.

Речные звёзды

В 2008 г. компания Bourne Energy (Калифорния) разработала генераторные установки RiverStar («Речная звезда») для устройства мини-ГЭС на небольших реках. RiverStar представляет собой капсулу с поплавком для фиксации ротора на требуемой глубине, ориентируемым глубинным стабилизатором, крыльчаткой, генератором с блоком преобразователя напряжения.

Модули RiverStar удерживаются на месте стальными тросами, натянутыми под водой поперёк течения реки, поэтому они не нуждаются в установке плотин, якорей и проведении каких-либо дополнительных работ на речном дне. Параллельно тросам на берег выходят кабели, по которым, собственно, и идёт электроэнергия. Мощность одного модуля при скорости течения реки 7,4 км/ч составляет 50 кВт. Генераторные установки RiverStar можно устанавливать блоками по несколько штук для увеличения мощности.

Мини-ГАЭС


В середине прошлого века британский изобретатель Элвин Смит предложил оригинальную конструкцию волновой малой гидроаккумулирующей электростанции. В основе установки – два поплавка, способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединён с морским дном с помощью цепи и якоря. Предусмотрена автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который постоянно меняется из-за приливов и отливов, с помощью телескопической трубы, раздвигающейся и складывающейся под действием сил Архимеда и тяжести. Между поплавками находится «насосная станция» (цилиндр с поршнем двойного действия, который качает воду при движении вниз и вверх). Она подаёт воду на сушу, в горы. В горах устраивают бассейн, в котором вода накапливается и в часы пиковых нагрузок выпускается обратно в море, по пути вращая водяную турбину.

Установка способна поднимать морскую воду на высоту до 200 м и вырабатывать мощность 0,25 МВт.

* * *

Природные условия в России весьма благоприятны для развития малой гидроэнергетики, а при современном уровне доступности информации и всевозможных материалов умельцы могут сделать мини-ГЭС даже своими руками, была бы подходящая река или ручей. Поэтому у малых ГЭС как альтернативных источников энергии, есть все шансы вновь широко распространиться в нашей стране.

Автор: Анна Марченко

Источник: Журнал Энерговектор, июль 2018

Источник: www.microhydro.ru

Принцип работы мини ГЭС

Принцип работы малых гидроэлектростанций ничем не отличается от принципа работы станций большой мощности. Вода водного образования, реки, озера, водохранилища, под действием напора, создаваемого своей массой, перемещается в заданном направлении и поступает на лопасти гидравлической турбины. Турбина передает свое вращательное движение на вращательное движение генератора, который вырабатывает электрический ток.

Напор воды создается путем строительства плотины или естественным течением воды, либо обоими способами одновременно.

Принцип работы

Классификация устройств

Малыми считаются гидроэлектростанции вырабатывающие мощность до 5,0 МВт.
Существующие малые гидроэлектростанции классифицируются по:

1. Принципу действия

  • Использование «водяного колеса» – в этом случае приемное колесо помещается в водную среду параллельно поверхности воды, при этом погружается лишь частично. Водные массы осуществляя давление на лопасти колеса, приводят его во вращательное движение, которое передается на вращательное движение генератора.
  • Гирляндная конструкция – в данной варианте устройства с противоположных берегов прокладывается трос, на который жестко крепятся роторы. Массы воды поступательно перемещаясь вращают роторы. Вращательное движение роторов передается на трос, который, в свою очередь, вращаясь передает свое вращательное движение на вращательное движение генератора. Генератор устанавливается на берегу.
  • С ротором Дарье – основой работы устройств данного типа является разность давлений на лопастях ротора. Разность давлений создается путем обтекания водой сложных поверхностей ротора.
  • С пропеллером – принцип действия аналогичен работе ветрового генератора, с разницей в том, что в случае мини ГЭС лопасти помещены в водную среду.

2. Возможности применения

  • Промышленное использование (180 кВт и выше) — используются для электроснабжения предприятий или реализации потребителям.
  • Коммерческое использование (до 180 кВт) — используют для электроснабжения мало энергоемких предприятий и группы домов.
  • Бытовое использование (до 15 кВт) — используются для электроснабжения индивидуальных домов и малых объектов.

3. По конструкции турбины

  • Осевые – в агрегатах этой конструкции вода движется вдоль оси турбины и попадет на лопасти, которые приходят во вращение.
  • Радиально-осевые – в этой конструкции вода изначально движется радиально по отношению оси турбины, а затем в соответствии с осью ее вращения.
  • Ковшовые — вода поступает на поверхность ковша (лопатки) через сопла, благодаря которым скорость воды увеличивается, она ударяется о лопатку турбины, турбина вращается, в работу вступает следующая лопатка и процесс продолжается
  • Поворотно-лопастные — лопасти поворачиваются вокруг своей оси одновременно с вращением турбины.

4. По условиям монтажа

  • Высоконапорные, при перепаде более 60 метров;
  • Средненапорные, с перепадом от 25 до 60 метров;
  • Низконапорные, с перепадом до 25 метров.princip

Плюсы и минусы устройства

К преимуществам использования можно отнести:

  • Экологическую безопасность установок для окружающей среды;
  • Неисчерпаемый источник энергии;
  • Низкая стоимость вырабатываемой энергии;
  • Автономность работы установок;
  • Надежность установок;
  • Продолжительный срок эксплуатации.

К минусам использования относятся:

  • Потенциальная опасность для обитателей водных объектов;
  • Ограниченная возможность условий монтажа установки.

Производители установок и оборудования

Производством оборудования для мини ГЭС занимается ограниченное количество предприятий как в нашей стране, так и за рубежом. Объясняется это ограниченностью применения малых гидроэлектростанций обусловленную малым наличием необходимых водных объектов, а также тенденциями развития энергетики в разных странах.

Из зарубежных фирм успешно работающих в этой области бизнеса это

  • «CINK Hydro-Energy» Республика Чехия – выполняет весь комплекс работ от проектирования и поставки оборудования, до монтажа и запуска установок в работу.
  • «Micro hydro power» Китай – производит и реализует комплекты оборудования для небольших установок бытового применения.
  • Инженерно-техническая фирма ОсОО «Гидропоника» г. Бишкек, Кыргызстан. Компания производит и реализует гидрогенераторы для малых ГЭС.

В России на этом рынке работают

  • ООО «АЭнерджи» г. Москва. Компания занимается поддержкой развития альтернативных источников энергии. В области малой гидроэнергетики компания предлагает весь спектр услуг от проектирования до сервисного обслуживания сданных установок.
  • Межотраслевое научно-техническое объединение «МНТО ИНСЭТ» г. Санкт-Петербург. Фирма занимается проектированием и разработкой оборудования для мини ГЭС, изготовлением и монтажом своей продукции. В линейке выпускаемой продукции имеется:
    • Мини ГЭС с пропеллерным рабочим колесом мощность от 5,0 до 100 кВт;
    • Мини ГЭС с диагональным рабочим колесом, мощностью 20,0 кВт;
    • Мини ГЭС с ковшовым рабочим колесом мощностью до 180 кВт;
    • Гидроагрегаты для малых ГЭС.
  • Компания «НПО Инверсия» г. Екатеринбург. Фирма производит оборудование и комплекты мини ГЭС мощностью до 10 кВт.

Мини ГЭС своими руками

Для того чтобы изготовить своими руками необходима смекалка, умение работать руками и водный объект,да кое-что по мелочам, как то автомобильный генератор, колесо от любого средства передвижения и передаточный механизм (шкивы, шестерни, зубчатая передача).

Самодельная МиниГЭС

В начале необходимо изготовить водяное колесо. Для этого берется колесо от велосипеда, мотоцикла или автомобиля. По диаметру колеса крепятся лопасти, для это можно использовать любой материал, лишь бы он был прочным и не гнулся – железо, фанера, твердый пластик, эбонит и т.д. Крепить лучше всего болтовым соединением, чтобы была возможность заменить поврежденные в процесс работы лопасти. Лопасти располагаются на равном расстоянии друг от друга.

Изготавливается каркас, на котором закрепляется колесо. В местах крепления к каркасу необходимо предусмотреть установку подшипников в которые вставляется ось вращения колеса. На один конец оси монтируется большой шкив или большая по размеру звездочка. На ось генератора насаживается малый шкив или меньшая звездочка.

Самодельная МиниГЭС3

Вариант самодельной мини ГЭС с вертикальной установкой колеса

Колесо помещается в воду, это может быть вертикальная установка в плоскости перпендикулярной поверхности воды, либо горизонтальная – когда колесо погружается в воду целиком. Во втором случае необходимо учесть, что колесо должно быть погружено в воду не более чем на 2/3 толщины диска.
Шкивы между собой соединяются посредством ремня, а звездочки посредством цепи.

Система готова к работе.

Источник: alter220.ru

Гидроэлектростанции непромышленного назначения

Гидроэлектростанции – это сооружения, способные преобразовать энергию движения воды в электричество. Альтернативные “зеленые” поставщики электроэнергии пока активно эксплуатируются только на Западе. На территории нашей страны эта перспективная отрасль лишь делает первые робкие шаги.

Небольшими частными гидроэлектростанциями могут быть плотины на больших реках, вырабатывающие от десятка до нескольких сотен мегаватт или мини-ГЭС с максимальной мощностью в 100 кВт, которых вполне достаточно для нужд частного дома. Вот о последних и узнаем подробней.

Гирляндная станция с гидровинтами

Конструкция состоит из цепи роторов, закрепленных на гибком стальном тросе, перетянутом поперек реки. Сам трос исполняет роль вращательного вала, один конец которого фиксируется на опорном подшипнике, а второй – активирует вал генератора.

Каждый гидроротор «гирлянды» способен вырабатывать около 2 кВт энергии, правда, скорость водного потока для этого должна быть не менее 2,5 метров в секунду, а глубина водоема не превышать 1,5 м.

Гирляндные станции с успехом использовались еще в середине прошлого века, но роль винтов тогда играли самодельные пропеллеры и даже консервные банки. Сегодня же производители предлагают несколько видов роторов для различных условий эксплуатации.

Они комплектуются лопастями разного размера, изготовленными из листового металла, и позволяют получить максимальный КПД от работы станции.

Но хотя в изготовлении этот гидрогенератор достаточно прост, его эксплуатация предполагает ряд специальных условий, не всегда осуществимых в реальной жизни. Такие сооружения перегораживают русло реки, и вряд ли соседи по берегу, не говоря уже о представителях экологических служб, разрешат использовать энергию потока для ваших целей.

Кроме того, в зимний период установку использовать можно только на незамерзающих водоемах, а в условиях сурового климата – консервировать или демонтировать. Поэтому гирляндные станции возводятся временно и преимущественно в безлюдной местности (например, около летних пастбищ).

Современный аналог гирляндной установки – погружные или наплывные рамные станции с поперечными роторами. В отличие от своей гирляндной предшественницы, эти конструкции не перегораживают всю реку, а задействуют только часть русла, причем установить их можно на понтоне/плоте или вовсе опустить на дно водоема.

Вертикальный ротор Дарье

Ротор Дарье – устройство турбины, которое получило название в честь своего изобретателя в 1931 г. Система состоит из нескольких аэродинамических лопастей, зафиксированных на радиальных балках, и работает за счет перепада давления по принципу «подъемного крыла», который широко задействован в кораблестроительстве и авиации.

Хотя такие установки больше используются для создания ветрогенераторов, они могут работать и с водой. Но в этом случае нужны точные расчеты, чтобы подобрать толщину и ширину лопастей в соответствии с силой водного потока.

Для создания локальных гидростанций вертикальные роторы используется редко. Несмотря на неплохие показатели КПД и кажущуюся простоту конструкции, оборудование достаточно сложное в эксплуатации.

Перед началом работы систему нужно «раскрутить», зато и остановить запущенную станцию сможет только замерзание водоема. Поэтому используется ротор Дарье преимущественно на промышленных предприятиях.

Интересное решение в сфере проектирования малых ГЭС с вертикально работающей турбиной предложил австрийский изобретатель Франц Цотлётерер:

Веским плюсом водоворотных станций вполне обоснованно считается сохранение рыбных ресурсов. Работа вертикальной турбины не наносит вреда живым организмам реки. К тому же на стенках сооружений не задерживается тина из-за специфического движения потока воды.

Подводный винтовой пропеллер

По сути, это самый простой воздушный ветряк, только устанавливается он под водой. Размеры лопастей, чтобы обеспечить максимальную скорость вращения и минимум сопротивления, рассчитываются в зависимости от силы движения потока. Например, если скорость течения не превышает 2 м/сек, то ширина лопасти должна быть в пределах 2-3 см.

Такой ветряк устанавливается «навстречу» потоку, но его лопасти работают не за счет давления водного напора, а благодаря возникновению подъемной силы (по принципу самолетного крыла или винта корабля).

Водяное колесо с лопастями

Водяное колесо – один из простейших вариантов гидравлического двигателя, известный еще со времен Римской Империи. Эффективность его работы во многом зависит от типа источника, на котором его установили.

В зависимости от глубины и русла водотока можно установить различные типы колес:

  • Подливные (или нижнебойные) – подойдут для мелководных рек с быстрым течением.
  • Среднебойные – располагаются в руслах с природными каскадами так, чтобы поток попадал приблизительно на середину вращающегося барабана.
  • Наливные (или верхнебойные) – устанавливаются под плотиной, трубой или в нижней части естественного порога, чтобы ниспадающая вода продолжила путь через вершину колеса.

Но принцип работы у всех вариантов один и тот же: вода попадает на лопасти и приводит в действие колесо, которое заставляет вращаться генератор для миниэлектростанции.

Производители гидрооборудования предлагают готовые турбины, лопасти которых специально адаптированы под определенную скорость водного потока. Но домашние умельцы изготавливают барабанные конструкции по старинке – из подручных материалов.

Ознакомиться с шагами сооружения простейшего варианта мини ГЭС поможет следующая фото-подборка:

Возможно, отсутствие оптимизации отразится на показателях КПД, зато себестоимость самодельного оборудования обойдется в разы дешевле покупного аналога. Поэтому водяное колесо наиболее популярный вариант для организации собственной мини-ГЭС.

Условия для установки гидроэлектростанции

Несмотря на заманчивую дешевизну энергии, вырабатываемую гидрогенератором, важно учесть особенности водного источника, ресурсы которого вы планируете задействовать для собственных нужд.

Ведь далеко не каждый водоток подойдет для эксплуатации мини-ГЭС, тем более круглогодичной, поэтому не помешает иметь в резерве возможность подключения к централизованной магистрали.

Несколько «за» и «против»

Основные плюсы индивидуальной гидроэлектростанции очевидны: недорогое оборудование, которое вырабатывает дешевое электричество, да еще и природе не вредит (в отличие от плотин, перекрывающих ток реки). Хотя абсолютно безопасной систему назвать нельзя – все-таки вращающиеся элементы турбин могут нанести травмы жителям подводного мира и даже людям.

Преимущества мини-ГЭС:

  1. В отличие от других «бесплатных» энергоисточников (солнечных батарей, ветрогенераторов), гидросистемы могут работать вне зависимости от времени суток и погоды. Единственное, что может им помешать – замерзание водоема.
  2. Для установки гидрогенератора необязательно наличие большой реки – те же водяные колеса с успехом можно использовать даже в мелких (но быстрых!) ручьях.
  3. Установки не выделяют вредных веществ, не загрязняют воду и работают практически бесшумно.
  4. Для монтажа мини-ГЭС мощностью до 100 кВт не нужно оформлять разрешительную документацию (хотя все зависит от местных властей и типа установки).
  5. Избыток электричества можно продавать в соседние дома.

Что касается недостатков – серьезной помехой для продуктивной эксплуатации оборудования может стать недостаточная сила течения. В этом случае придется возводить вспомогательные сооружения, что сопряжено с дополнительными затратами.

Если потенциальной энергии расположенной рядом реки при приблизительном расчете не хватит на выработку электричества в объеме, достаточном для практического применения, стоит обратить внимание на способы сооружения ветрогенераторов. Ветряк послужит эффективным дополнением.

Измерение силы водного потока

Первое, что нужно сделать, чтобы задуматься о виде и способе монтажа станции, – измерить скорость водного потока на облюбованном источнике.

Самый простой способ – опустить на стремнину любой легкий предмет (например, теннисный мячик, кусок пенопласта или рыбацкий поплавок) и засечь секундомером время, за которое он проплывет расстояние до какого-нибудь ориентира. Стандартная дистанция для «заплыва» – 10 метров.

Теперь нужно пройденное расстояние в метрах разделить на количество секунд – это и будет скорость течения. Но если полученное значение будет меньше 1 м/сек, потребуется возвести искусственные сооружения, чтобы ускорить поток перепадами высот.

Это реально осуществить с помощью разборной плотины или неширокой сливной трубы. Но без хорошего течения от идеи с гидростанцией придется отказаться.

Изготовление ГЭС на основе водяного колеса

Разумеется, собрать «на коленке» и возвести махину, предназначенную для обслуживания предприятия или населенного пункта даже из десятка домов – идея из области фантастики. Но соорудить своими руками мини-ГЭС для экономии электричества – вполне реально. Причем задействовать можно как готовые комплектующие, так и подручные материалы.

Поэтому рассмотрим пошагово изготовление наиболее простого сооружения – водяного колеса.

Необходимые материалы и инструменты

Чтобы сделать своими руками мини-ГЭС, нужно подготовить сварочный аппарат, болгарку, дрель и набор вспомогательных инструментов – молоток, отвертку, линейку.

Из материалов понадобятся:

  • Уголки и листовой металл толщиной не менее 5 мм.
  • Трубы из ПВХ или оцинкованной стали для изготовления лопастей.
  • Генератор (можно использовать готовый покупной или сделать самому, как в данном примере).
  • Тормозные диски.
  • Вал и подшипники.
  • Фанера.
  • Полистироловая смола для заливки ротора и статора.
  • Медный провод на 15 мм для самодельного генератора.
  • Неодимовые магниты.

Учтите, что конструкция колеса будет постоянно контактировать с водой, поэтому металлические и деревянные элементы необходимо выбирать с защитой от влаги (или позаботится об их пропитке и покраске самостоятельно). В идеале, фанеру можно заменить пластиком, но деревянные детали проще достать и придать им нужную форму.

Сборка колеса и изготовление сопла

Основой для самого колеса могут стать два стальных диска одинакового диаметра (если есть возможность достать стальной барабан от кабеля – отлично, это намного ускорит процесс сборки).

Но если металла в подручных материалах не нашлось, можно вырезать круги и из водостойкой фанеры, хотя прочность и срок службы даже обработанного дерева не сравнится со сталью. Затем на одном из дисков нужно прорезать круглое отверстие под установку генератора.

После этого изготавливаются лопасти, а их понадобится не меньше 16 шт. Для этого оцинкованные трубы разрезаются вдоль на две или четыре части (зависит от диаметра). Затем места резки и саму поверхность лопастей нужно отшлифовать, чтобы уменьшить потери энергии при трении.

Расстояние между двумя боковыми дисками должно быть максимально приближено к длине лопастей. Чтобы наметить место для расположения будущих ступиц, рекомендуется сделать шаблон из фанеры, на котором будет обозначено место для каждой детали и отверстия для фиксации колеса к генератору. Готовую разметку можно прикрепить на внешней стороне одного из дисков.

Затем круги устанавливаются параллельно друг к другу с помощью стержней со сплошной резьбой, а лопасти привариваются или фиксируются болтами в нужных позициях. Барабан будет вращаться на подшипниках, а в качестве опоры используется рама из уголков или труб небольшого диаметра.

Сопло предназначено для водных источников каскадного типа – такая установка позволит использовать энергию потока по максимуму. Изготавливается этот вспомогательный элемент путем выгибания листового металла с последующей сваркой швов, а после насаживается на трубу.

Однако если в вашей местности протекает равнинная река без порогов и других высотных препятствий, в этой детали нет необходимости.

Теперь колесо нужно насадить на ось и установить на подпорку из сваренных или скрепленных болтами уголков. Осталось сделать генератор (или установить готовый) и можно отправляться к реке.

Генератор своими руками

Для изготовления самодельного генератора нужно сделать обмотку и заливку статора, для чего понадобятся катушки со 125-ю витками медной проволоки на каждой. После их соединения вся конструкция заливается полиэстеровой смолой.

Теперь нужно подготовить фанерный шаблон, совпадающий по размерам с тормозным диском.

На деревянном кольце выполняется разметка и делаются прорези для установки магнитов (в данном случае использовались неодимовые магниты толщиной 1,3 см, шириной 2,5 см и длиной 5 см). Затем полученный ротор также заливается смолой, а после просушки – присоединяется к барабану колеса.

Последним монтируется алюминиевый кожух с амперметром, закрывающий выпрямители. Задача этих элементов – преобразовывать трехфазный ток в постоянный.

Чтобы в колесо не попадали листья, песок и другой мусор, принесенный с потоком, желательно поставить перед устройством защитную сетку.

Также можно поэкспериментировать с зазорами между магнитами и катушками с увеличенным количеством витков для увеличения КПД гидростанции.

О всех видах альтернативных источников энергии вы узнаете, ознакомившись со статьей, посвященной внедрению в быт “зеленых технологий”.

Выводы и полезное видео по теме

Видео #1. Пример работающей гидроустановки с самодельным генератором на базе трехфазного двигателя:

Видео #2. Мини-ГЭС, сконструированная по принципу водяного колеса:

Видео #3. Станция на основе велосипедного колеса – интересный вариант решения проблемы с энергообеспечением на отдыхе вдали от цивилизации:

Как видите, построить водяную миниэлектростанцию своими руками не так уж и сложно. Но так как большинство расчетов и параметров для ее комплектующих определяется «на глазок», следует быть готовым к возможным поломкам и сопутствующим затратам.

Если вы чувствуете нехватку знаний и опыта в данной сфере, стоит довериться специалистам, которые выполнят все необходимые расчеты, посоветуют оптимальное для вашего случая оборудование и качественно произведут его установку.

Пишите, пожалуйста, комментарии в расположенном ниже блоке. Делитесь интересными сведениями и полезными рекомендациями, оставляйте тематические фото. Возможно, вы хотите рассказать, как соорудили собственными руками действующую гидроэлектростанцию на загородном участке? Будем рады прочитать ваш рассказ о процессе устройства и эксплуатации.

Источник: sovet-ingenera.com

Классификация, типы, достоинства и недостатки мини ГЭС

В последнее время, из-за роста тарифов на электроэнергию, все более актуальными становятся возобновляемые источники практически бесплатной энергии.

Малая гидроэлектростанция или малая ГЭС (МГЭС) — гидроэлектростанция, вырабатывающая сравнительно малое количество электроэнергии и основано на гидроэнергетических установках мощностью от 1 до 3000 кВт. Общепринятого для всех стран понятия малой гидроэлектростанции нет, в качестве основной характеристики таких ГЭС принята их установленная мощность.

Установки для малой гидроэнергетики классифицируют по мощности на:

  • оборудование для мини гидроэлектростанции мощностью до 100 кВт;
  • оборудование для микро гидроэлектростанций мощностью до 1000 кВт.

Из известной классической триады: солнечные батареи, ветрогенераторы, гидрогенераторы (ГЭС), последние наиболее сложные. Они, во-первых, работают в агрессивных условиях, а во-вторых, имеют максимальную наработку за равный промежуток времени.

Наиболее просто делать бесплотинные ГЭС, т.к. сооружение плотины достаточно сложное и дорогое дело и часто требует согласования с местными властями или, по крайней мере, с соседями. Бесплотинные мини ГЭС называют проточными. Существует четыре основных варианта таких устройств.

Типы мини ГЭС

Водяное колесо — это колесо с лопастями, установленное перпендикулярно поверхности воды. Колесо погружено в поток меньше чем наполовину. Вода давит на лопасти и вращает колесо. Существуют также колеса-турбины со специальными лопатками, оптимизированными под струю жидкости. Но это достаточно сложные конструкции скорее заводского, чем самодельного изготовления.

Гирляндная мини-ГЭС — представляет собой трос, с жестко закрепленными на нем роторами. Трос перекинут с одного берега реки на другой. Роторы как бусы нанизаны на трос и полностью погружены в воду. Поток воды вращает роторы, роторы вращают трос. Один конец троса соединен с подшипником, второй с валом генератора.

Ротор Дарье — это вертикальный ротор, который вращается за счет разности давлений на его лопастях. Разница давлений создается за счет обтекания жидкостью сложных поверхностей. Эффект подобен подъемной силе судов на подводных крыльях или подъемной силе крыла самолета.

Пропеллер — это подводный «ветряк» с вертикальным ротором. В отличие от воздушного, подводный пропеллер имеет лопасти минимальной ширины. Для воды достаточно ширины лопасти всего в 2 см. При такой ширине будет минимальное сопротивление и максимальная скорость вращения. Такая ширина лопастей выбиралась для скорости потока 0.8-2 метра в секунду. При больших скоростях, возможно, оптимальны другие размеры.

Достоинства и недостатки различных систем миниГЭС

Недостатки гирляндной МГЭС очевидны: большая материалоемкость, опасность для окружающих (длинный подводный трос, скрытые в воде роторы, перегораживание реки), низкий КПД. Гирляндная ГЭС – это небольшая плотина. Ротор Дарье сложен в изготовлении, в начале работы его нужно раскрутить. Но он привлекателен тем, что ось ротора расположена вертикально и отбор мощности можно производить над водой, без дополнительных передач. Такой ротор будет вращаться при любом изменении направления потока.

Таким образом, с точки зрения простоты изготовления и получения максимального КПД с минимальными затратами, необходимо выбрать конструкцию типа водяное колесо или пропеллер.

Конструкция малой гидростанции

Конструкция малой ГЭС базируется на гидроагрегате, который включает в себя энергоблок, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы используются малыми гидростанциями, их делят на несколько категорий:

— русловые или приплотинные станции с небольшими водохранилищами;

— стационарные мини ГЭС, использующие энергию свободного течения рек;

— МГЭС, использующие существующие перепады уровней воды на различных объектах водного хозяйства;

— мобильные мини ГЭС в контейнерах, с применением в качестве напорной деривации пластиковых труб или гибких армированных рукавов.

Разновидности гидроагрегатов для малых гидроэлектростанций

Основой для малой гидростанции является гидроагрегат, который, в свою очередь, базируется на турбине того или иного вида. Существуют гидроагрегаты с:

— Осевыми турбинами;

— Радиально-осевыми турбинами;

— Ковшовыми турбинами;

— Поворотно-лопастными турбинами.

МГЭС классифицируются и в зависимости максимального использования напора воды на:

— высоконапорные — более 60 м;

— средненапорные — от 25 м;

— низконапорные — от 3 до 25 м.

От того, какой напор воды использует микрогидроэлектростанция, различаются и виды применяемых в оборудовании турбин. Ковшовые и радиально-осевые турбины разработаны для высоконапорных ГЭС. Поворотно-лопастные и радиально-осевые турбины применяются на средненапорных станциях. На низконапорных малых гидростанциях(МГЭС) устанавливают в основном поворотно-лопастные турбины в железобетонных камерах.

Что касается принципа работы турбины мини ГЭС, то он во всех конструкциях практически идентичен: вода под напором поступает на лопасти турбины, которые начинают вращаться. Энергия вращения передается на гидрогенератор, который отвечает за выработку электроэнергии. Турбины для объектов подбираются в соответствии с некоторыми техническими характеристиками, среди которых главной остается напор воды. Кроме того, турбины выбираются в зависимости от вида камеры которая идет в комплекте — стальной или железобетонной.

Мощность миниГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы.

При выборе мини ГЭС стоит ориентироваться на такое энергетическое оборудование, которое было бы адаптировано под конкретные нужды объекта и отвечало таким критериям, как:

— наличие надежных и удобных в эксплуатации средств управления и контроля над работой оборудования;

— управление оборудованием в автоматическом режиме с возможностью перехода при необходимости на ручное управление;

— генератор и турбина гидроагрегата должны иметь надежную защиту от вероятных аварийных ситуаций;

— площади и объемы строительных работ для установки малых ГЭС должны быть минимальными.

Выгоды использования мини-ГЭС:

Гидроэлектростанции малой мощности обладают целым рядом преимуществ, которые делают это оборудование все более популярным. Прежде всего, стоит отметить экологическую безопасность мини ГЭС – критерий, который становится все более важным в свете проблем защиты окружающей среды. Малые гидроэлектростанции не возникает вредного влияния ни на свойства, ни на качество воды. Акватории, где устанавливается гидроэлектростанция малой мощности, можно использовать как для рыбохозяйственной деятельности, так и в качестве источника водоснабжения населенных пунктов. Кроме того, для работы малых ГЭС нет необходимости в наличии больших водоемов. Они могут функционировать, используя энергию течения небольших рек и даже ручьев.

Что касается экономической эффективности, то и здесь у микро и мини гидроэлектростанций есть немало преимуществ. Станции, разработанные с учетом современных технологий, отличаются простой в управлении, они полностью автоматизированы. Таким образом, оборудование не требуют присутствия человека. Специалисты отмечают, что и качество тока, вырабатываемого малыми ГЭС, соответствует требованиям ГОСТа как по напряжению, так и по частоте. При этом, мини ГЭС могут действовать как автономно, так и в составе электросети.

Говоря о малых гидроэлектростанциях, стоит отметить и такое их преимущество, как полный ресурс их работы, который составляет не менее 40 лет. Ну а главное — объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

Одним из важнейших экономических факторов является вечная возобновляемость гидротехнических ресурсов. Если подсчитать буквальную выгоду от применения малых ГЭС, то выяснится, что электроэнергия вырабатываемая ими практически в 4 раза дешевле электроэнергии, которую потребитель получает от теплоэлектростанций. Именно по этой причине сегодня ГЭС все чаще находят применение для электроснабжения электроёмких производств.

Не забудем и о том, что малые ГЭС не требуют приобретения какого-либо топлива. К тому же они отличаются сравнительно простой технологией выработки электроэнергии, в результате чего затраты труда на единицу мощности на ГЭС почти в 10 раз меньше, чем на ТЭЦ.

Источник: www.gigavat.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.