Мантия это в географии


Мантия это в географииМногим известно, что планета Земля в сейсмическом (тектоническом) смысле состоит из ядра, мантии и литосферы (коры). Мы рассмотрим, что такое мантия. Это слой или промежуточная оболочка, которая находится между ядром и корой. Мантия составляет 83% объема планеты Земля. Если же брать вес, то 67% Земли — это мантия.

Два слоя мантии

Еще в начале двадцатого века было принято считать, что мантия однородна, но уже к середине столетия ученые пришли к выводу, что она состоит из двух слоев. Близкий к ядру слой — это нижняя мантия. Тот слой, который граничит с литосферой — верхняя мантия. Верхняя мантия уходит вглубь Земли приблизительно на 600 километров. Нижняя граница нижней мантии расположена на глубине до 2900 километров.

Из чего состоит мантия

Подобраться к мантии ученым еще не доводилось. Никакое бурение пока еще не позволило приблизиться к ней. Поэтому все исследования производятся не опытным, а теоретическим и опосредованным путем. Свои выводы о мантии земли ученые делают прежде всего на основе геофизических исследований. В расчет берутся электропроводность, сейсмические волны, скорость их распространения, сила.


Японские ученые заявляли о своих намерениях подойти к мантии земли, пробурив океанические породы, но пока их планы еще не воплощены в жизнь. На дне океана уже найдены некоторые места, где слой земной коры наиболее тонкий, то есть до верхней части мантии отсанется бурить всего-то каких-то 3000 км. Сложность заключается в том, что бурение должно проводится на дне океана и при этом буру предстоит пройти участки сверхпрочных пород, а это можно сравнить с попыткой хвостика нитки прорваться через стенки наперстка. Безусловно, возможность изучить образцы пород, взятых непосредственно из мантии, дала бы составить более точное представление о ее структуре и составе.

Мантия это в географии

Алмазы и перидоты

Информативными являются и мантийные породы, которые в результате различных геофизических и сейсмических процессов оказываются на поверхности земли. Например, к мантийным породам относятся алмазы. Некоторые из них, предполагают исследователи, поднимаются из нижней мантии. Наиболее распространенные породы — это перидоты. Они часто выбрасываются в лаве извержениями вулканов. Изучение мантийных пород позволяет ученым с определенной точностью говорить о составе и основных чертах мантии.


Мантия это в географии

Жидкое состояние и вода

Составляют мантию силикатные породы, которые насыщены магнием и железом. Все вещества, составляющие мантию, пребывают в раскаленном. расплавленном, жидком состоянии, ведь температура этого слоя достаточно велика — до двух с половиной тысяч градусов. Вода также входит в состав мантии Земли. В количественном отношении ее там в 12 раз больше, чем в мировом океане. Запас воды в мантии таков, что если бы ее выплеснуть на поверхность земли, то вода поднялась бы над поверхностью на 800 метров.

Процессы в мантии

Граница мантии не представляет собой ровную линию. Наоборот, в некоторых местах, например, в районе Альп, на дне океанов, мантийные, то есть относящиеся к мантии породы подступают довольно близко к поверхности Земли. Именно физические и химические процессы, которые протекают в мантии, оказывают влияние на то, что происходит в земной коре и на поверхности земли. Речь идет об образовании гор, океанов, движении материков.

Источник: xn—-8sbiecm6bhdx8i.xn--p1ai

Д.Ю. Пущаровский, Ю.М. Пущаровский (МГУ им. М.В. Ломоносова)


Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры — тонкой приповерхностной пленке земного шара. Вместе с тем новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.

Сейсмическая модель строения Земли

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним — 8,1 км/с. Это и есть граница мантии и ядра .


Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо , М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию — на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е.


ллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А — земная кора, В — зона в интервале глубин 33-413 км, С — зона 413-984 км, D — зона 984-2898 км, Д — 2898-4982 км, F — 4982-5121 км, G — 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D' (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика — уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Мантия это в географии

Рис. 1. Схема глубинного строения Земли

Внутреннее ядро , имеющее радиус 1225 км, твердое и обладает большой плотностью — 12,5 г/см3. Внешнее ядро жидкое, его плотность 10 г/см3. На границе ядра и мантии отмечается резкий скачок не только в скорости продольных волн, но и в плотности. В мантии она снижается до 5,5 г/см3. Слой D", находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре значительно превышают температуры мантии. Местами данный слой порождает огромные, направленные к поверхности Земли сквозь мантийные тепломассопотоки, называемые плюмами. Они могут проявляться на планете в виде крупных вулканических областей, как, например, на Гавайских островах, в Исландии и других регионах.


Верхняя граница слоя D" неопределенна; ее уровень от поверхности ядра может варьировать от 200 до 500 км и более. Таким образом, можно заключить, что данный слой отражает неравномерное и разноинтенсивное поступление энергии ядра в область мантии.

Границей нижней и верхней мантии в рассматриваемой схеме служит сейсмический раздел, лежащий на глубине 670 км. Он имеет глобальное распространение и обосновывается скачком сейсмических скоростей в сторону их увеличения, а также возрастанием плотности вещества нижней мантии. Этот раздел является также и границей изменений минерального состава пород в мантии.

Таким образом, нижняя мантия , заключенная между глубинами 670 и 2900 км, простирается по радиусу Земли на 2230 км. Верхняя мантия имеет хорошо фиксирующийся внутренний сейсмический раздел, проходящий на глубине 410 км. При переходе этой границы сверху вниз сейсмические скорости резко возрастают. Здесь, как и на нижней границе верхней мантии, происходят существенные минеральные преобразования.

Верхнюю часть верхней мантии и земную кору слитно выделяют как литосферу, являющуюся верхней твердой оболочкой Земли, в противоположность гидро- и атмосфере. Благодаря теории тектоники литосферных плит термин "литосфера" получил широчайшее распространение. Теория предполагает движение плит по астеносфере — размягченном, частично, возможно, жидком глубинном слое пониженной вязкости. Однако сейсмология не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных слоев, расположенных по вертикали, а также прерывистость их по горизонтали. Особенно определенно их чередование фиксируется в пределах континентов, где глубина залегания астеносферных слоев (линз) варьирует от 100 км до многих сотен.


Под океанскими абиссальными впадинами астеносферный слой лежит на глубинах 70-80 км и менее. Соответственно нижняя граница литосферы фактически является неопределенной, а это создает большие трудности для теории кинематики литосферных плит, что и отмечается многими исследователями.

Таковы основы представлений о строении Земли , сложившиеся к настоящему времени. Далее обратимся к новейшим данным в отношении глубинных сейсмических рубежей, представляющих важнейшую информацию о внутреннем строении планеты.

Современные данные о сейсмических границах

Тем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км [1]. Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.


Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.

Ниже рассмотрим, каким образом геофизические рубежи соотносятся с полученными в последнее время результатами структурных изменений минералов под влиянием высоких давлений и температур, значения которых соответствуют условиям земных глубин.

Состав верхней мантии

Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов.


соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы — оливин, пироксены и гранат в отношении 4 : 2 : 1), пиклогитовая (главные минералы — пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al2SiO5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии , простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO2) ~ 2, оказываясь ближе к оливину (Mg, Fe)2SiO4, чем к пироксену (Mg, Fe)SiO3, а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

Источник: mirznanii.com

МА́НТИЯ ЗЕМЛИ́, гео­сфе­ра, рас­по­ло­жен­ная ме­ж­ду зем­ной ко­рой и ядром Зем­ли.


­став­ля­ет ок. 84% объ­ё­ма и 67% мас­сы Зем­ли. Верх­няя гра­ни­ца про­хо­дит на глу­би­не от не­сколь­ких км под океа­на­ми до 70 км под кон­ти­нен­та­ми по Мо­хо­ро­ви­чи­ча гра­ни­це, ниж­няя – на глу­би­не 2980 км. Осн. све­де­ния о строе­нии М. З. по­лу­че­ны на ос­но­ве из­ме­ре­ния вре­ме­ни про­хо­ж­де­ния сейс­мич. волн, по ко­то­ро­му на­хо­дят ско­ро­сти про­доль­ных и по­пе­реч­ных сейс­мич. волн, за­ви­ся­щие от плот­но­сти и уп­ру­гих мо­ду­лей ве­ще­ст­ва ман­тии. Та­ким спо­со­бом ман­тию «про­све­чи­ва­ют» и по­лу­ча­ют её трёх­мер­ную сейс­мо­то­мо­гра­фич. мо­дель. В гео­фи­зич. мо­де­ли строе­ния Зем­ли, пред­ло­жен­ной ав­ст­рал. сейс­мо­ло­гом К. Е. Бул­ле­ном в 1940-х гг. и по­лу­чив­шей ши­ро­кое рас­про­стра­не­ние, М. З. раз­де­ле­на на слои B, C, D (по­след­ний вклю­ча­ет слои D′ и D″), ко­то­рые от­ли­ча­ют­ся сейс­мич. ха­рак­те­ри­сти­ка­ми (см. в ст. Зем­ля, раз­дел Строе­ние твёр­дой зем­ли). В нач. 21 в. ис­поль­зу­ют и др. схе­мы раз­де­ле­ния Зем­ли на зо­ны. В од­ной из мо­де­лей М. З. де­лят на 4 час­ти: верх­няя ман­тия до глу­би­ны 410 км, пе­ре­ход­ная зо­на в ин­тер­ва­ле глу­бин 410–660 км, ниж­няя ман­тия ни­же глу­би­ны 660 км до т. н. слоя D″ на гра­ни­це ме­ж­ду ман­ти­ей и ядром, имею­ще­го пе­ре­мен­ную тол­щи­ну (в ср. 250 км).

Ско­ро­сти рас­про­стра­не­ния про­доль­ных сейс­мич. волн при пе­ре­се­че­нии гра­ни­цы зем­ной ко­ры и ман­тии скач­ко­об­раз­но воз­рас­та­ют с 7,5–7,8 км/с до 8,1–8,2 км/с. В верх­ней ман­тии сейс­мич. ско­ро­сти и плот­ность ве­ще­ст­ва рас­тут с глу­би­ной в осн. за счёт сжа­тия под дав­ле­ни­ем. В пе­ре­ход­ной зо­не ве­ще­ст­во уп­лот­ня­ет­ся так­же и за счёт фа­зо­вых пе­ре­хо­дов ми­не­ра­лов в бо­лее плот­ные мо­ди­фи­ка­ции; сейс­мич. ско­ро­сти рез­ко воз­рас­та­ют. Слой D″ хи­ми­че­ски не­од­но­ро­ден, по­это­му сейс­мич. ско­ро­сти и плот­ность ве­ще­ст­ва в нём рез­ко ме­ня­ют­ся с глу­би­ной и по ла­те­ра­ли. На гра­ни­це М. З. и яд­ра ско­рость про­хо­ж­де­ния про­доль­ных сейс­мич. волн рез­ко сни­жа­ет­ся с 13,6 км/с до 8,1 км/с. Плот­ность ве­ще­ст­ва М. З. уве­ли­чи­ва­ется с глу­би­ной от зна­че­ний 3100–3500 кг/м3, дос­ти­гая у гра­ни­цы с ядром 5600 кг/м3. О др. фи­зич. ха­рак­те­ри­сти­ках М. З. (ус­ко­ре­ние си­лы тя­же­сти, дав­ле­ние, темп-ра, вяз­кость) и их из­ме­не­нии с глу­би­ной см. в ст. Зем­ля в раз­де­ле Фи­зи­че­ские ха­рак­те­ри­сти­ки твёр­дой Зем­ли.

М. З. в це­лом име­ет си­ли­кат­ный со­став. Хи­мич., ми­не­ра­ло­гич. и фа­зо­вый со­ста­вы оп­ре­де­ля­ют пу­тём срав­не­ния плот­но­сти и уп­ру­гих мо­ду­лей ве­ще­ст­ва, из­ме­рен­ных в ла­бо­ра­то­рии под прес­сом и оп­ре­де­лён­ных по сейс­мич. дан­ным. Верх­няя ман­тия сло­же­на в осн. оли­ви­ном и пи­рок­се­на­ми, пе­ре­ход­ная зо­на – оли­ви­ном (60%) и гра­на­том (40%). В пе­ре­ход­ной зо­не на глу­би­не 410 км оли­вин пе­ре­хо­дит в вадс­ле­ит, ко­то­рый на глу­би­не 520 км пе­ре­хо­дит в рин­гву­дит. Ниж­няя ман­тия со­сто­ит из пе­ров­ски­та и маг­не­зио­вю­сти­та, в ко­то­рые на глу­би­не 660–700 км пре­вра­ща­ют­ся рин­гву­дит и гра­нат с сум­мар­ным скач­ком плот­но­сти 9%. На верх­ней гра­ни­це слоя D″ пе­ров­скит пе­ре­хо­дит в ещё бо­лее плот­ную мо­ди­фи­ка­цию – пост­пе­ров­скит. По­сколь­ку глу­би­на (дав­ле­ние) это­го пе­ре­хо­да в зна­чит. сте­пе­ни за­ви­сит от темп-ры, то верх­няя гра­ни­ца слоя D″ очень не­ров­ная.

Тем­пе­ра­ту­ра в М. З. ни­же темп-ры плав­ле­ния гор­ных по­род. Не­смот­ря на это, в ман­тии воз­ни­ка­ют очень мед­лен­ные те­че­ния, обу­слов­лен­ные на­ли­чи­ем в кри­стал­лич. струк­ту­ре ве­ще­ст­ва т. н. де­фек­тов – ва­кан­сий и дис­ло­ка­ций, ко­то­рые мо­гут пе­ре­ме­щать­ся под влия­ни­ем сдви­го­во­го на­пря­же­ния. По мере рос­та темп-ры с глу­би­ной вяз­кость ве­ще­ст­ва ман­тии силь­но па­да­ет и не­мно­го рас­тёт с уве­ли­че­ни­ем дав­ле­ния. Вяз­кость са­мо­го верх­не­го от­но­си­тель­но хо­лод­но­го слоя верх­ней ман­тии тол­щи­ной до 100 км очень вы­со­кая (до 1025 П). Этот твёр­дый слой вхо­дит в ли­то­сфе­ру; на­зы­ва­ет­ся ли­то­сфер­ной ман­ти­ей. На глу­би­не 100–200 км темп-ра в М. З. воз­раста­ет до 1300–1500 К, при этом дав­ле­ние ос­та­ёт­ся от­но­си­тель­но не­вы­со­ким, по­это­му в верх­ней ман­тии воз­ни­ка­ет слой с по­ни­жен­ной вяз­ко­стью 1018 П – ас­те­но­сфе­ра. Вяз­кость ос­таль­ной час­ти верх­ней ман­тии ок. 1021 П, а ниж­ней ман­тии – ори­ен­ти­ро­воч­но в 30 раз боль­ше.

В свя­зи с тем что в М. З. име­ет­ся пе­репад темп-ры на глу­би­не, то бо­лее го­ря­чее и, со­от­вет­ст­вен­но, ме­нее плот­ное ве­ще­ст­во, на­хо­дя­щее­ся в ниж­ней час­ти ман­тии, стре­мит­ся под­нять­ся вверх. В ре­зуль­та­те в М. З. воз­ни­ка­ет те­п­ло­вая кон­век­ция со сред­ней ско­ро­стью 3 см/год (ок. 1 нм/с). Кон­век­ция при­мер­но в 20 раз ус­ко­ря­ет вы­нос те­п­ла и ос­ты­ва­ние недр Зем­ли. Ман­тий­ная кон­век­ция пред­став­ля­ет со­бой сис­те­му го­ря­чих вос­хо­дя­щих (см. Мантийный плюм) и хо­лод­ных нис­хо­дя­щих по­то­ков ве­ще­ст­ва. Ра­нее (до 2002) рас­смат­ри­ва­лась ги­по­те­за о двухъ­я­рус­ной кон­век­ции (от­дель­но в верх­ней и в ниж­ней ман­тии), обу­слов­лен­ной фа­зо­вым пе­ре­хо­дом в оли­ви­не на глу­би­не 660 км, тор­мо­зя­щем кон­век­цию. Од­на­ко про­ве­дён­ные ис­сле­до­ва­ния по­ка­за­ли, что фа­зо­вый пе­ре­ход в гра­на­те вы­зы­ва­ет про­ти­во­по­лож­ный эф­фект. Вслед­ст­вие че­го вос­хо­дя­щие ман­тий­ные по­то­ки бес­пре­пят­ст­вен­но про­хо­дят че­рез гра­ни­цу 660 км (да­же ус­ко­ря­ют­ся). Нис­хо­дя­щие ман­тий­ные по­то­ки лишь вре­мен­но за­дер­жи­ва­ют­ся в отд. мес­тах на этой гра­ни­це.

Источник: bigenc.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.