Направление движения литосферных плит


Текто́ника плит — современное научное представление о строении и движении литосферы, согласно которому земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении друг относительно друга. При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции. Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.

Впервые идея о движении блоков коры была высказана в теории дрейфа континентов, предложенной Альфредом Вегенером в 1920-х годах. Эта теория была первоначально отвергнута. Возрождение идеи о движениях в твёрдой оболочке Земли («мобилизм») произошло в 1960-х годах, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и пододвигания одних частей коры под другие (субдукции). Объединение этих представлений со старой теорией дрейфа материков породило современную теорию тектоники плит, которая вскоре стала общепринятой концепцией в науках о Земле.


В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки — характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.

История теории[править | править код]

Основой теоретической геологии начала XX века была контракционная гипотеза. Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей, созданная на основании изучения складчатых образований. Эта теория была сформулирована Джеймсом Даной, который добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах-впадинах возникают тангенциальные силы, которые давят на континенты. Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Против этой схемы выступил немецкий учёный-метеоролог Альфред Вегенер. 6 января 1912 года он выступил на собрании Немецкого геологического общества с докладом о дрейфе материков. Исходной посылкой к созданию теории стало совпадение очертаний западного побережья Африки и восточного Южной Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного праматерика.


Вегенер не удовлетворился совпадением очертаний побережий (которые неоднократно замечались и до него), а стал интенсивно искать доказательства теории. Для этого он изучил геологию побережий обоих континентов и нашёл множество схожих геологических комплексов, которые совпадали при совмещении, так же, как и береговая линия. Другим направлением доказательства теории стали палеоклиматические реконструкции, палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы, по обе стороны Атлантического океана. Они очень схожи, но разделены многокилометровым водным пространством, и трудно предположить, что они пересекли океан.

Кроме того, Вегенер стал искать геофизические и геодезические доказательства. Однако в то время уровень этих наук был явно не достаточен, чтобы зафиксировать современное движение континентов. В 1930 году Вегенер погиб во время экспедиции в Гренландии, но перед смертью уже знал, что научное сообщество не приняло его теорию.

Изначально теория дрейфа материков была принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе, которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог. В качестве источника движения плит предлагались сила Кориолиса, приливные явления и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения огромных континентальных блоков.


Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты, и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, получив статус маргинальной науки, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды об Атлантиде. Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так дю Туа (Alexander du Toit) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты.

Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что континенты всё-таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к пониманию «машины» под названием Земля.


К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты, которые возвышаются на 1,5—2 км над абиссальными равнинами, покрытыми осадками. Эти данные позволили Р. Дитцу (англ.)русск. и Г. Хессу (англ.)русск. в 1962—1963 годах выдвинуть гипотезу спрединга. Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны — структуры непостоянные, неустойчивые, континенты же — устойчивые.

В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы как запись инверсий магнитного поля Земли, зафиксированная в намагниченности базальтов дна океана. После этого тектоника плит начала победное шествие в науках о Земле. Всё больше учёных понимали, что, чем тратить время на защиту концепции фиксизма, лучше взглянуть на планету с точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам.


Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далёких квазаров и измерениями с помощью спутниковых навигационных систем GPS.[1] Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.

Современное состояние тектоники плит[править | править код]

За прошедшие десятилетия тектоника плит значительно изменила свои основные положения. Ныне их можно сформулировать следующим образом:

  • Верхняя часть твёрдой Земли делится на хрупкую литосферу и пластичную астеносферу. Конвекция в астеносфере — главная причина движения плит.
  • Современная литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Мелкие плиты расположены в поясах между крупными плитами. Сейсмическая, тектоническая и магматическая активность сосредоточена на границах плит.
  • Литосферные плиты в первом приближении описываются как твёрдые тела, и их движение подчиняется теореме вращения Эйлера.
  • Существует три основных типа относительных перемещений плит
  1. расхождение (дивергенция), выражено рифтингом и спредингом;
  2. схождение (конвергенция), выраженное субдукцией и коллизией;
  3. сдвиговые перемещения по трансформным геологическим разломам.
  • Спрединг в океанах компенсируется субдукцией и коллизией по их периферии, причём радиус и объём Земли постоянны с точностью до термического сжатия планеты (в любом случае средняя температура недр Земли медленно, в течение миллиардов лет, уменьшается).
  • Перемещение литосферных плит вызвано их увлечением конвективными течениями в астеносфере.

Существует два принципиально разных вида земной коры — кора континентальная (более древняя) и кора океаническая (не старше 200 миллионов лет). Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Более 90 % поверхности Земли в современную эпоху покрыто 8 крупнейшими литосферными плитами:

  • Австралийская плита
  • Антарктическая плита
  • Африканская плита
  • Евразийская плита
  • Индостанская плита
  • Тихоокеанская плита
  • Северо-Американская плита
  • Южно-Американская плита

Среди плит среднего размера можно выделить Аравийскую плиту, а также плиты Кокос и плиту Хуан де Фука, остатки огромной плиты Фаралон, слагавшей значительную часть дна Тихого океана, но ныне исчезнувшую в зоне субдукции под Северной и Южной Америками.

Сила, двигающая плиты[править | править код]


Сейчас уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных теплогравитационных течений — конвекции. Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на её поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодным и потому более тяжёлым массам, уже отдавшим часть тепла земной коре. Этот процесс переноса тепла (следствие всплывания лёгких-горячих масс и погружения тяжёлых-более холодных масс) идёт непрерывно, в результате чего возникают конвективные потоки. Эти потоки — течения замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном же направлении с огромной силой за счёт огромной вязкости мантийного вещества. Если бы мантия была совершенно жидкой — вязкость пластичной мантии под корой была бы малой (скажем, как у воды или около того), то через слой такого вещества с малой вязкостью не могли бы проходить поперечные сейсмические волны. А земная кора увлекалась бы потоком такого вещества со сравнительно малой силой. Но, благодаря высокому давлению, при относительно низких температурах, господствующих на поверхности Мохоровичича и ниже, вязкость мантийного вещества здесь очень велика (так, что в масштабе лет вещество мантии Земли — жидкое (текучее), а в масштабе секунд — твёрдое).


Движущей силой течения вязкого мантийного вещества непосредственно под корой является перепад высот свободной поверхности мантии между областью подъёма и областью опускания конвекционного потока. Этот перепад высот, можно сказать, величина отклонения от изостазии, образуется из-за разной плотности чуть более горячего (в восходящей части) и чуть более холодного вещества, поскольку вес более и менее горячего столбов в равновесии одинаков (при разной плотности!). На самом же деле, положение свободной поверхности не может быть измерено, оно может быть только вычислено (высота поверхности Мохоровичича + высота столба мантийного вещества, по весу эквивалентного слою более лёгкой коры над поверхностью Мохоровичича).[2]

Эта же движущая сила (перепада высот) определяет степень упругого горизонтального сжатия коры силой вязкого трения потока о земную кору. Величина этого сжатия мала в области восхождения мантийного потока и увеличивается по мере приближения к месту опускания потока (за счёт передачи напряжения сжатия через неподвижную твёрдую кору по направлению от места подъёма к месту спуска потока). Над опускающимся потоком сила сжатия в коре так велика, что время от времени превышается прочность коры (в области наименьшей прочности и наибольшего напряжения), происходит неупругая (пластическая, хрупкая) деформация коры — землетрясение. При этом из места деформации коры выдавливаются целые горные цепи, например, Гималаи (в несколько этапов).[2]


При пластической (хрупкой) деформации очень быстро (в темпе смещения коры при землетрясении) уменьшается и напряжение в ней — сила сжатия в очаге землетрясения и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счёт очень медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.

Таким образом, движение плит — следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель.

Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии. Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана, калия и других радиоактивных элементов, но впоследствии выяснилось, что содержания радиоактивных элементов в породах земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла. А содержание радиоактивных элементов в подкоровом веществе (по составу близком к базальтам океанического дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжёлых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.


Другая модель объясняет нагрев химической дифференциацией Земли. Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию.

Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела. Это объяснение сомнительно — при аккреции тепло выделялось практически на поверхности, откуда оно легко уходило в космос, а не в центральные области Земли.

Второстепенные силы[править | править код]

Сила вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но, кроме неё, на плиты действуют и другие, меньшие по величине, но также важные силы. Это — силы Архимеда, обеспечивающие плавание более лёгкой коры на поверхности более тяжёлой мантии. Приливные силы, обусловленные гравитационным воздействием Луны и Солнца (различием их гравитационного воздействия на разноудаленные от них точки Земли). Сейчас приливной «горб» на Земле, вызванный притяжением Луны, в среднем около 36 см. Раньше Луна была ближе, и это имело большие масштабы, деформация мантии приводит к её нагреву. Например, вулканизм, наблюдаемый на Ио (спутник Юпитера), вызван именно этими силами — прилив на Ио около 120 м. А также силы, возникающие вследствие изменения атмосферного давления на различные участки земной поверхности — силы атмосферного давления достаточно часто изменяются на 3 %, что эквивалентно сплошному слою воды толщиной 0,3 м (или гранита толщиной не менее 10 см). Причём это изменение может происходить в зоне шириной в сотни километров, тогда как изменение приливных сил происходит более плавно — на расстояниях в тысячи километров.

Дивергентные границы или границы раздвижения плит[править | править код]

Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Океанические рифты[править | править код]

На океанической коре рифты приурочены к центральным частям срединно-океанических хребтов. В них происходит образование новой океанической коры. Общая их протяжённость более 60 тысяч километров. К ним приурочено множество гидротермальных источников, которые выносят в океан значительную часть глубинного тепла, и растворённых элементов. Высокотемпературные источники называются чёрными курильщиками, с ними связаны значительные запасы цветных металлов.

Континентальные рифты[править | править код]

Раскол континента на части начинается с образования рифта. Кора утончается и раздвигается, начинается магматизм. Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов. После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами, превращаясь в авлакоген, либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

Конвергентные границы[править | править код]

Конвергентными называются границы, на которых происходит столкновение плит. Возможно три варианта (Convergent plate boundary):

  1. Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная, и погружается под континент в зоне субдукции.
  2. Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга.
  3. Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример — Гималаи.

В редких случаях происходит надвигание океанической коры на континентальную — обдукция. Благодаря этому процессу возникли офиолиты Кипра, Новой Каледонии, Омана и другие.

В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в срединно-океанических хребтах. В них происходят исключительно сложные процессы взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений, один из популярнейших объектов современных геологических исследований.

Большинство современных зон субдукции расположены по периферии Тихого океана, образуя тихоокеанское огненное кольцо. Процессы, идущие в зоне конвергенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происхождения, образуя новую континентальную кору.

Активные континентальные окраины[править | править код]

Активная континентальная окраина возникает там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки, её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующаяся при этом структура называется аккреционным клином. Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

Островные дуги[править | править код]

Островные дуги — это цепочки вулканических островов над зоной субдукции, возникающие там, где океаническая плита погружается под другую океаническую плиту. В качестве типичных современных островных дуг можно назвать Алеутские, Курильские, Марианские острова, и многие другие архипелаги. Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом.

Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный жёлоб и преддуговый прогиб.

За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море, Южно-Китайское море и т. д.), в котором также может происходить спрединг.

Коллизия континентов[править | править код]

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, напр., Ангаро-Витимский и Зерендинский.

Трансформные границы[править | править код]

Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы — грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

Трансформные разломы[править | править код]

В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома. На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры — надвиги, складки и грабены. В результате в зоне разлома нередко обнажаются мантийные породы.

По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией.

Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

Сдвиги на континентах[править | править код]

Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас, отделяющий Северо-Американскую плиту от Тихоокеанской. 800-мильный разлом Сан-Андреас — один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

Внутриплитные процессы[править | править код]

Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории. Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

Горячие точки[править | править код]

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет. Он поднимается над поверхностью океана в виде Гавайских островов, от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, например, атолл Мидуэй, выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север и называется уже Императорским хребтом. Он прерывается в глубоководном жёлобе перед Алеутской островной дугой.

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка — место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом. В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядра — мантии.

Гипотеза горячих точек вызывает и возражения. Так, в своей монографии Сорохтин и Ушаков считают её несовместимой с моделью общей конвекции в мантии, и также указывают, что выделяющиеся магмы в гавайских вулканах как раз относятся к относительно холодным, и не свидетельствуют о повышенной температуре в астеносфере под разломом. «В этом отношении плодотворной является гипотеза Д. Таркота и Е. Оксбурга (1978), согласно которой литосферные плиты, перемещаясь по поверхности горячей мантии, вынуждены приспосабливаться к переменной кривизне эллипсоида вращения Земли. И хотя радиусы кривизны литосферных плит при этом меняются несущественно (всего на доли процента), их деформация вызывает в теле крупных плит появление избыточных напряжений растяжения или сдвига порядка сотен бар.»

  • См. Гавайская горячая точка

Траппы и океанические плато[править | править код]

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы, а в океанах океанические плато. Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время — порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км²); при этом изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе, траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но, в отличие от горячих точек, они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники, которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.

Тектоника плит как система наук[править | править код]

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода, движения плит можно описать геометрическими законами перемещения фигур на сфере. Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты. Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени. Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину, в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье — Стокса. Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли — нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход. Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход. В смысле истории планеты Земля, тектоника плит — это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков — террейнов. При изучении Скалистых гор зародилось особое направление геологических исследований — террейновый анализ, который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

Тектоника плит на других планетах[править | править код]

В настоящее время нет подтверждений современной тектоники плит на других планетах Солнечной системы. Исследования магнитного поля Марса, проведённые в 1999 космической станцией Mars Global Surveyor, указывают на возможность тектоники плит на Марсе в прошлом.

Некоторые процессы ледяной тектоники на Европе аналогичны процессам, происходящим на Земле.

Когда началась тектоника плит на Земле[править | править код]

Первые блоки континентальной коры, кратоны, возникли на Земле в архее[источник не указан 2595 дней], тогда же начались их горизонтальные перемещения, но полный комплекс признаков действия механизма тектоники плит современного типа встречается только в позднем протерозое. До этого мантия, возможно, имела иную структуру массопереноса, в которой большую роль играли не установившиеся конвективные потоки, а турбулентная конвекция и плюмы.

В прошлом[когда?] поток тепла из недр планеты был больше[источник не указан 2595 дней], поэтому кора была тоньше[источник не указан 2595 дней], давление под намного более тонкой корой было тоже намного ниже. А при существенно более низком давлении и чуть большей температуре вязкость мантийных конвекционных потоков непосредственно под корой была намного ниже нынешней. Поэтому в коре, плывущей на поверхности мантийного потока, менее вязкого, чем сегодня, возникали лишь сравнительно небольшие упругие деформации. И механические напряжения, порождаемые в коре менее вязкими, чем сегодня, конвекционными потоками, были недостаточны для превышения предела прочности пород коры. Поэтому, возможно, и не было такой тектонической активности, как в более позднее время[источник не указан 2595 дней].

Прошлые перемещения плит[править | править код]

Восстановление прошлых перемещений плит — один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору — суперконтинент. Современные континенты образовались 200—150 млн лет назад, в результате раскола суперконтинента Пангеи. Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

Влияние перемещений плит на климат[править | править код]

Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения. Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

Однако простая и логичная схема: континенты в приполярных областях — оледенение, континенты в экваториальных областях — повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли. Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида, и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение, во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Значение тектоники плит[править | править код]

Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии, или открытием ДНК в генетике. До принятия теории тектоники плит науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.

См. также[править | править код]

  • Азональность

Примечания[править | править код]

Литература[править | править код]

  • Вегенер А. Происхождение материков и океанов /пер. с нем. П. Г. Каминского под ред. П. Н. Кропоткина. — Л.: Наука, 1984. — 285 с.
  • Добрецов Н. Л., Кирдяшкин А. Г. Глубинная геодинамика. — Новосибирск, 1994. — 299 с.
  • Зоненшайн, Кузьмин М. И. Тектоника плит СССР. В 2-х томах.
  • Кузьмин М. И., Корольков А. Т., Дриль С. И., Коваленко С. Н. Историческая геология с основами тектоники плит и металлогении. — Иркутск: Иркут. ун-т, 2000. — 288 с.
  • Кокс А., Харт Р. Тектоника плит. — М.: Мир, 1989. — 427 с.
  • Н. В. Короновский, В. Е. Хаин, Ясаманов Н. А. Историческая геология : Учебник. М.: изд-во Академия, 2006.
  • Лобковский Л. И., Никишин А. М., Хаин В. Е. Современные проблемы геотектоники и геодинамики. — М.: Научный мир, 2004. — 612 c. — ISBN 5-89176-279-X.
  • Хаин, Виктор Ефимович. Основные проблемы современной геологии. М.: Научный Мир, 2003.
  • Сорохтин О. Г., Ушаков С. А. Развитие Земли М: Изд-во МГУ, 2002. 506 с.

Источник: ru.wikipedia.org

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты – это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки – это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской конвейерной ленты. Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании восходящих потоков от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит – это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров – на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, извержения вулканов и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры океанов и континентов в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде «Геодинамика», в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней мантии Земли.

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне «ядро-мантия» происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в складчатых поясах.

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления – в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая океаническая кора. Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.

Источник: FB.ru

«Литосферные плиты. Тектоника плит»

Литосферные плиты – крупные жесткие блоки литосферы Земли, ограниченные сейсмически и тектонически активными зонами разломов.

Плиты, как правило, разделены глубокими разломами и перемещаются по вязкому слою мантии относительно друг друга со скоростью 2—3 см в год. В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. При взаимодействии континентальной и океанической плит плита с океанической земной корой пододвигается под плиту с континентальной земной корой, в результате образуются глубоководные желоба и островные дуги.

Движение литосферных плит связано с перемещением вещества в мантии. В отдельных частях мантии существуют мощные потоки тепла и вещества, поднимающегося из его глубин к поверхности планеты.

Более 90 % поверхности Земли покрыто 13-ю крупнейшими литосферными плитами.

литосферные плиты

Рифт огромный разлом в земной коре, образующийся при ее горизонтальном растяжении (т. е. там, где расходятся потоки тепла и вещества). В рифтах происходит излияние магмы, возникают новые разломы, горсты, грабены. Формируются срединно-океанические хребты.

Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных плит. Согласно этой теории, литосфера не является монолитом, а состоит из крупных и мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.

Земная кора разделяется на устойчивые (платформы) и подвижные участки (складчатые области — геосинклинали).

Срединно-океанические хребты

Срединно-океанические хребты – мощные подводные горные сооружения в пределах дна океана, занимающие чаще всего срединное положение. Близ срединно-океанических хребтов происходит раздвижение литосферных плит и возникает молодая базальтовая океаническая кора. Процесс сопровождается интенсивным вулканизмом и высокой сейсмичностью.

Срединно-океанические хребты

Континентальными рифтовыми зонами являются, например, Восточно-Африканская рифтовая система, Байкальская система рифтов. Рифты, так же как и срединно-океанические хребты, характеризуются сейсмической активностью и вулканизмом.

Тектоника плит – гипотеза, предполагающая, что литосфера разбита на крупные плиты, которые перемещаются по мантии в горизонтальном направлении. Близ срединно-океанических хребтов литосферные плиты раздвигаются и наращиваются за счет вещества, поднимающегося из недр Земли; в глубоководных желобах одна плита подвигается под другую и поглощается мантией. В местах столкновения плит образуются складчатые сооружения.

тектоника плит

Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).

Источник: uchitel.pro

Плиты

Хотя поверхность Земли выглядит сплошной, на самом деле она состоит из ряда огромных кусков, сложенных друг с другом наподобие гигантской мозаики. Эти куски называются плитами и постоянно движутся друг относительно друга. Плита может быть образована как материковой, так и океанической литосферой или же включать в себя литосферу обоих этих типов. Края этих плит называются их границами. В этих местах происходят почти все землетрясения и расположено большинство вулканов.

Горные породы и минералы

Любая горная порода состоит из частиц минералов, или природных химических веществ. Каждая порода содержит ту или иную комбинацию минералов, причем в определенном соотношении. К примеру, гранит состоит из двух минералов: кварца и полевого шпата (он может также содержать и малые количества других минералов, например слюды). Каждый из минералов, составляющих гранит, образован различными химическими — элементами. Скажем, кварц состоит из кремния и кислорода (подробнее об этом в статье «Горные породы и минералы«).

Движущиеся плиты

Плиты земной коры постоянно перемещаются в разных направлениях, хотя и очень медленно. Средняя скорость их движения равна 5 см в год. Примерно с такой же скоростью растут ваши ногти. Поскольку все плиты плотно прилегают друг к другу, движение любой из них действует на окружающие плиты, заставляя и их постепенно перемещаться. Плиты могут перемещаться по-разному, что можно видеть на их границах, но причины, вызывающие движение плит, ученым пока неизвестны. Видимо, этот процесс может не иметь ни начала, ни конца. Тем не менее некоторые теории утверждают, один тип движения плит может быть, так сказать, «первичным», а от него уже приходят в движение все прочие плиты.

Один из типов движения плит — это «подныривание» одной плиты под другую. Некоторые ученью полагают, что именно этот тип движения вызывает все прочие перемещения плит. На некоторых границах расплавленная порода, пробиваясь на поверхность между двумя плитами, затвердевает по их краям, расталкивая эти плиты. Этот процесс тоже может вызывать перемещение всех других плит. Считается также, что, помимо первичного толчка, движение плит стимулируют гигантские тепловые потоки, циркулирующие в мантии (см. статью «Движение плит«).

Дрейфующие материки

Ученые полагают, что со времени образования первичной земной коры движение плит изменяло положение, очертания и размеры материков и океанов. Этот процесс назвали тектоникой плит. Приводятся разные доказательства этой теории. Например, очертания таких материков, как Южная Америка и Африка, выглядят так, будто они когда-то составляли единое целое. Обнаружилось и несомненное сходство в строении и возрасте горных пород, слагающих древние горные цепи на обоих материках.

1. По мнению ученых, массивы суши, ныне образующие Южную Америку и Африку, более 200 млн. лет назад были соединены друг с другом.

2. Видимо, дно Атлантического океана постепенно расширялось, когда на границах плит формировалась новая порода.

3. Сейчас Южная Америка и Африка удаляются друг от друга со скоростью порядка 3,5 см в год из-за движения плит.

Источник: www.polnaja-jenciklopedija.ru

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Типы движений тектонических плит. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Типы движений тектонических плит. Автор24 — интернет-биржа студенческих работ

Источник: spravochnick.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.