Пластик применение


Подсчитано, что каждые 10% снижения веса транспортного средства приводят к снижению расхода топлива на 5-7%. Текущие экономические и экологические проблемы делают создание более экономичных автомобилей главным приоритетом в автомобильной промышленности. Использование современных материалов, таких как алюминий и углеродное волокно, полезно, но разумное применение пластмасс имеет все большее значение.

Некоторые другие преимущества высокоэффективных пластиков, используемых в транспортных средствах, включают в себя:

— минимальную коррозию, позволяющую продлить срок службы автомобиля

— существенная свобода дизайна, позволяющая продвигать творчество и инновации

— гибкость в интеграции компонентов

— безопасность, комфорт и экономия

— вторичная переработк.

Вот лучшие 13 высокопроизводительных пластмасс, используемых в автомобильной технике. В то время как все 13 могут легко использоваться в одном автомобиле, только три типа пластмасс составляют

примерно 66% от общего числа высокоэффективных пластмасс, используемых в автомобиле: полипропилен (32%), полиуретан (17%) и ПВХ (16%) ,

1) Полипропилен (PP)


Полипропилен — это термопластичный полимер, используемый в самых разных областях. Насыщенный аддитивный полимер, изготовленный из мономера пропилена, он прочный и необычайно устойчивый ко многим химическим растворителям, основаниям и кислотам.

Применение: автомобильные бамперы, химические баки, изоляция кабелей, газовые баллончики, ковровые волокна.

2) Полиуретан (PUR)

Твердый полиуретан — это эластомерный материал с исключительными физическими свойствами, включая ударную вязкость, гибкость и устойчивость к истиранию и температуре. Полиуретан имеет широкий диапазон жесткости, от ластика до твердого шара для боулинга. Другие характеристики полиуретана включают чрезвычайно высокий срок службы при изгибе, высокую несущую способность и выдающуюся стойкость к погоде, озону, радиации, маслам, бензину и большинству растворителей.

Применение: гибкие пенопластовые сидения, пенопластовые изоляционные панели, эластомерные колеса и шины, автомобильные подвесные втулки, подушки, электрические герметики, твердые пластиковые детали.

3) Поливинилхлорид (ПВХ)

ПВХ обладает хорошей эластичностью, огнестойкостью, хорошей термостойкостью, высоким глянцем и низким содержанием свинца. Поливинилхлоридные формовочные смеси можно подвергать экструзии, литью под давлением, прессованию под давлением, каландрированию и формованию раздувом для образования огромного разнообразия продуктов, либо жестких, либо гибких, в зависимости от количества и типа используемых пластификаторов.

Применение: автомобильные приборные панели, оболочка электрических кабелей, труб, дверей.

4) ABS


Акрилонитрил-бутадиен-стирол представляет собой сополимер, полученный полимеризацией стирола и акрилонитрила в присутствии полибутадиена. Стирол придает пластику блестящую непроницаемую поверхность. Бутадиен, каучуковое вещество, обеспечивает устойчивость даже при низких температурах. Различные модификаторы могут применяться для улучшения ударопрочности, ударной вязкости и термостойкости.

Применение: автомобильные кузовные детали, приборные панели, колпаки колес.

5) Полиамид (PA, Нейлон 6/6, Нейлон 6)

Нейлон 6/6 — это нейлон общего назначения, который можно формовать и прессовать. Нейлон 6/6 обладает хорошими механическими свойствами и износостойкостью. Он часто используется, когда требуется низкая стоимость, высокая механическая прочность, жесткий и стабильный материал. Нейлон хорошо впитывает воду и будет набухать в водной среде.

Применение: шестерни, втулки, кулачки, подшипники, атмосферостойкие покрытия.

6) Полистирол (PC)


Естественно чистый, полистирол обладает отличной химической и электрической стойкостью. Широко доступны специальные глянцевые и ударопрочные марки. Этот простой в изготовлении пластик обладает плохой стойкостью к ультрафиолетовому излучению.

Применение: корпуса оборудования, пуговицы, автомобильная фурнитура, витрины.

7) Полиэтилен (PE)

Полиэтилен обладает высокой ударопрочностью, низкой плотностью и обладает хорошей ударной вязкостью. Он может использоваться в самых разнообразных способах обработки термопластов и особенно полезен, когда требуются влагостойкость и низкая стоимость.

Применение: автомобильные кузова (армированные стеклом), электроизоляция.

8) ПОМ (POM — полиоксиметилен)

POM обладает превосходной крепкостью, жесткостью и пределом текучести. Эти свойства стабильны при низких температурах. ПОМ также обладает высокой химической и топливостойкостью.

Применение: внутренняя и внешняя отделка, топливные системы, малая шестерня.

9) Поликарбонат (PC)

Аморфный поликарбонатный полимер предлагает уникальное сочетание жесткости, твердости и ударной вязкости. Обладает отличными атмосферными, ползучими, ударными, оптическими, электрическими и термическими свойствами. Из-за своей исключительной ударной вязкости он является материалом для автомобильных бамперов, шлемов всех видов и заменителей пуленепробиваемого стекла.

Применение: бамперы, линзы фар.

10) Акрил (PMMA)


Прозрачный термопласт, PMMA часто используется в качестве легкой или устойчивой к разрушению альтернативы стеклу. Это дешевле, чем PC, но также более подвержен царапинам и разрушениям.

Применение: окна, дисплеи, экраны.

11) PBT (полибутилентерефталат)

Термопластичный PBT используется в качестве изолятора в электротехнической и электронной промышленности. Это очень химически и термостойкий материал. Также есть огнестойкие марки.

Применение: дверные ручки, бамперы, компоненты карбюратора.

12) Полиэтилентерафталат (PET)

ПЭТ в основном используется для создания синтетических волокон и пластиковых бутылок. Вы можете узнать об этом, прочитав ярлыки одежды, там он называется «полиэстер».

Применение: корпус рычага стеклоочистителя и корпуса редуктора, фиксатор фары, крышка двигателя, корпуса разъемов.

13) ASA (акрилонитрил-стирол-акрилат)

Как и ABS, ASA обладает высокой прочностью и жесткостью, хорошей химической стойкостью и термостойкостью, отличной устойчивостью к погодным условиям, старению и пожелтению, а также высоким глянцем. Будьте осторожны, чтобы не сжечь этот материал. При горении выделяется токсичный дым.

Применение: корпуса, профили, детали интерьера и наружного применения.

Источник: koros.biz

1. Компоненты, входящие в состав пластмасс


В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.

Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.

Стабилизаторы вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.

Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).

Смазочные вещества стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.


2. Классификация пластмасс

В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.

Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.

Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.

К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).


Пластик применение

Пластик применение

Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс

В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.

Таблица 1.

Пластик применение

Пластик применение

Рис. 3. Изделия, где применены термореактивные пластмассы

Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.

Пластик применение

Рис. 4. Пресс-форма для литья пластмасс

В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.

Таблица 2.


Пластик применение

Пластик применение

Рис. 5. Изделия из термопластичных пластмасс

Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).

3. Механические свойства пластмасс

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).


Пластик применение

Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).


Пластик применение

Рис. 7. Детали конструкционного применения из пластмасс

В таблице 3 указаны механические свойства термопластов общего назначения.

Таблица 3.

Пластик применение

Несколько примеров по обозначению (см. табл. ниже).

ПЭВД Полиэтилен высокого давления ГОСТ 16337-77
ПЭНД Полиэтилен низкого давления ГОСТ 16338-85
ПС Полистирольная плёнка ГОСТ 12998-85
ПВХ Пластификаторы ГОСТ 5960-72
АБС Акрилбутодиентстирол ГОСТ 8991-78
ПММА Полиметилметаакрилат ГОСТ 2199-78

Пластик применение

4. Сварка пластмасс

Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.

Пластмассы можно сваривать различными способами:

  • нагретым газом;
  • контактной теплотой от нагревательных элементов;
  • трением;
  • ультразвуком (рис. 8).

Основные условия для получения качественного соединения пластмасс при сварке следующие:

  1. Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
  2. Сварку следует вести по возможности быстро во избежание термического разложения материала.
  3. Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.

На рис. 8 показано оборудование и методы сварки пластмасс.

Пластик применение

Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров

5. Другие свойства пластмасс

Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.

Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.

Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.

Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо

Источник: extxe.com

Виды пластика

1. PET (PETE), полиэтилентерефталат.

Самый часто используемый вид пластмассы, дешевый в производстве. ПЭТ используется при производстве большинства пластиковых бутылок для напитков, кетчупа, растительного масла, упаковки косметической продукции. Нехрупкий и эластичный материал. Отличная жесткость и ударостойкость. Именно поэтому его любят производители товаров народного потребления, так как упаковка не трескается при транспортировке или при падении с полок в супермаркетах. ПЭТ растворим в ацетоне, бензоле, толуоле, этилацетате, четыреххлористом углероде, хлороформе, метиленхлориде, метилэтилкетоне.

Токсичность: Что касается токсичности ПЭТ, следует помнить, что чистый ПЭТ не токсичен. Однако ПЭТ может содержать фталаты и другие токсичные химические соединения, которые вводят в полимер для повышения термо-, свето-, и огнеупорных свойств. Следует запомнить, что такой пластик действительно одноразовый. Категорически не рекомендуется использовать бутылки из такого пластика повторно — при повторном использовании изделия из ПЭТ могут выделять фталат и тяжелые металлы, что может вызвать заболевания сердечно-сосудистой, нервной систем и повлиять на гормональный баланс. В странах Европы и в США запрещено производить детские игрушки из ПЭТ.

2. HDPE или PE HD, полиэтилен высокой плотности низкого давления.

Это жесткий тип пластика, который практически не выделяет вредных веществ и устойчив к маслам, бензину и температурным воздействиям. Его используют для изготовления контейнеров для еды, упаковки молока, моющих средств, детских игрушек, спортивных и туристических многоразовых бутылок, дорожных отбойников и даже для производства детских горок. По горючести ПНД согласно стандарту DIN 4102 относится к классу В: В1 — трудно возгораемые и В2 — нормально возгораемые. Температура самовоспламенения около 350°С.

Токсичность: Не токсичен. По существу в химическом составе полиэтилена содержится только углерод и водород. Поэтому практически единственными веществами, выделяющимися при горении полиэтилена, являются углекислый газ, монооксид углерода (угарный газ), вода и незначительное количество сажи.

3. ПВХ (Поливинилхлорид)

Мягкий и гибкий пластик, который часто используют в ремонте и строительстве. Из него делают пластиковые окна, натяжные потолки, садовые шланги, линолеум, сантехнические трубы, пленки для бассейнов. ПВХ активно используется в автомобильной индустрии — приборная панель, подстаканники, ручки, подлокотники сделаны из ПВХ. Также часто он встречается и в быту — пищевая пленка и искусственная кожа сделаны из этого вида пластика. Благодаря тому, что такой материал гибок, его также используют для оплётки компьютерных кабелей.

В обычном состоянии, ПВХ твёрдый и ломкий, поэтому для придания ему гибкости и мягкости добавляют пластификаторы, а именно вещества из группы фталатов. ПВХ долговечен, не боится ни влаги, ни солнца, температурных перепадов, устойчив к химическим соединениям.

Токсичность:

ПВХ считают совершенно безвредным. Хлор, входящий в его состав, находится в связанном состоянии. Вредное воздействие он оказывает, только когда разрушается. Процесс разрушения может начаться при окислении, при сильном нагревании или горении с выделением бензола.

Важное замечание:

В обычном состоянии ПВХ не должен пахнуть. Если натяжной потолок, ПВХ панели или другие изделия резко пахнут, значит, была нарушена технология изготовления материала и использованы более дешевые присадки. В этом случае лучшим решением будет избавиться от этих изделий, если это возможно. То же самое касается и «запаха нового автомобиля». После изготовления элементов салона химические соединения нестабильны и в них происходит процесс отвода газов, в результате которого высвобождаются химические пары и появляется запах. Поэтому в первые полгода лучше почаще проветривать новую машину и не оставлять её надолго под прямыми лучами солнца. В интернете часто советуют промыть пластик мыльным раствором или лимоном, но, к сожалению, это не поможет. Выделение газов из самой структуры материала будет происходить ещё некоторое время.

4. LDPE полиэтилен низкой плотности высокого давления (ПВД, ПНП)

Гибкий и эластичный материал. Не боится низкой температуры и не становится хрупким на холоде. При контакте с пищевыми продуктами ПВД не выделяет вредных веществ. Из этого материала делают гладкие нешуршащие пакеты, пищевую упаковку, парниковые пленки, детские игрушки, мусорные мешки. Также его используют в ремонтах для разводки труб водоснабжения. Например, трубы Rehau Rautitan Stabil, которые мы используем в своих ремонтах, сделаны из полиэтилена низкой плотности. ПВД влаго- и воздухонепроницаем, устойчив к ультрафиолетовому излучению, сжатию и растяжению, не проводит электричество.

Токсичность: Не токсичен, биологически инертен и легко перерабатывается

5. Полипропилен

Полипропилен имеет высокую термостойкость и выдерживает температуру до 150 градусов по Цельсию. Он менее плотный, чем полиэтилен, но при этом более твердый. Единственный существенный недостаток полипропилена — высокая чувствительность к ультрафиолетовому излучению и кислороду. Чувствительность к кислороду понижается при введении стабилизаторов.

Из полипропилена делают упаковочные материалы, пленки, ламповые патроны, ковры, термобелье и флисовую одежду, корпуса телевизоров, блоки предохранителей, некоторые автозапчасти и автомобильные бамперы, ингаляторы, одноразовые шприцы и другое пластиковое медицинское оборудование, которое требует стерилизации. Полипропилен легко воспламеняется, образуя при этом капли. Горит полипропилен светлым пламенем с голубой сердцевиной, выделяя резкий запах парафина.

Токсичность: Полипропилен считается безопасным материалом.

Полипропиленовые сетки используют в качестве имплантационного материала при операциях по лечению грыж. Такие сетки могут оставаться в теле человека по нескольку лет. Однако стоит помнить, что полипропилен не рассчитан на длительные нагревания до высоких температур.

6. PS (ПС), Полистирол

Полистирол – термопластичный материал, обладающий высокой твёрдостью и хорошими диэлектрическими свойствами, химически стойкий по отношению к щелочам и кислотам, кроме азотной и уксусной. Растворяется в ацетоне и бензине. Не устойчив к ультрафиолетовому излучению. Обладает низким влагопоглощением и высокой влагостойкостью и морозостойкостью.

Разделяют 3 вида полистирола — общего назначения, ударопрочный и экструдированный. Из полистирола изготавливают всем известный пенопласт, упаковочные материалы В строительстве из полистирола производят теплоизоляционные материалы, потолочные галтели и декоративные плитки. Также из него делают одноразовую термопосуду и используют при упаковке бытовой техники в виде пенопласта.

Токсичность:

В обычном состоянии безвреден. Токсичен при нагревании.

7. (PC, O, OTHER) –Поликарбонат, полиамид, смесь различных видов пластиков или полимеры, не указанные выше

В данную группу входят виды пластмасс, не получившие отдельный номер. Пластик под данной маркировкой не подлежит переработке. Маркировка PC означает, что изделие состоит из поликарбоната, одного из самых опасных видов пластика. Из него могут изготавливаться бутылочки для детей, пищевая упаковка, игрушки, бутылки для воды. При частом мытье или нагревании изделия из поликарбоната выделяют бисфенол А — вещество, которое может привести к гормональным нарушениям в организме человека.

Что следует запомнить

  • Сам по себе пластик безвреден, опасны вспомогательные вещества, которые используются при его изготовлении. Чаще всего это присадки для придания пластику определенных свойств: термоустойчивость, эластичность или устойчивость к кислороду.
  • — Самыми безопасными видами пластика считаются полиэтилен высокого и низкого давления и полипропилен.
  • — Не используйте PET упаковку вторично
  • — Избегайте пластмассовые изделия с маркировкой 7

Источник: prosto-remont.com

Краткая история появления

Считается, что первооткрывателем пластмассы был британский изобретатель Паркс.   В 1855г. он решил чем-нибудь заменить материал бильярдных шаров. В то время они состояли из слоновой кости.

Изобретатель ПарксОн смешал масло камфорного дерева, нитроцеллюлозу (хлопок + азотная и серная кислота) и спирт. При нагревании получил однородную жидкую смесь, которая при охлаждении застыла и стала твердой. Это и была первая разновидность пластмассы, полученная искусственным путем из природных и химических материалов.

И только через сто лет в 1953г. немецкий профессор Штаудингер открыл синтетическую макромолекулу (молекула с очень большим количеством атомов и большой массой). Она то и стала базовой прародительницей для получения разнообразных видов промышленного пластика.

 Если не вдаваться в научные подробности, новые виды пластмасс создаются следующим образом: в макромолекуле, особым образом, меняют расположение звеньев малых молекул. Эти цепочки называются полимерами. От этих «перестроений» рождаются материалы с определенными физико-механическими характеристиками.

Химики всего мира сразу, после этого открытия, стали выстраивать из этих кубиков трансформеров конструкции с ранее невиданными свойствами.

 

 изделия из пластмассы

Свойства

Изделия из пластмасс имеют следующие особенности:

1. Для дизайнеров и инженеров это тот материал, из которого можно изготавливать самые сложные по форме конструкции.
2. Отличаются экономичностью в сравнении с аналогичными продуктами из других материалов. Малые энергетические затраты при производстве. Простота формовки.
3. Почти все виды палстика не нуждаются в покраске, так как они имеют свои различные цветовые гаммы.
4. У них небольшой вес.
5. Обладают высокой эластичностью.
6. Являются отличными диэлектриками (т.е. практически не проводят электрический ток).
7. Обладают низкой теплопроводностью (отличные теплоизоляторы).
8. У материалов высокий коэффициент шумоизоляции.
9. Не подвержены, в отличие от металлов коррозии.
10. Имеют хорошую устойчивость к перепадам дневных и межсезонных температур.
11. У пластиков высокая стойкость ко многим агрессивным химическим средам.
12. Они могут выдержать большие механические нагрузки. 

 

применение пластмассы

 

Применение пластмасс

Пластмассы прекрасно могут заменять функции многих, более дорогих в изготовлении, металлических, бетонных или деревянных изделий.  И в промышленности и  в быту этот материал используется повсеместно.

1. На наземном, морском и авиационном транспорте применение пластмассовых частей и деталей машин существенно снижает их вес и стоимость.

2. В машиностроении из пластика изготавливают: технологическую оснастку; подшипники скольжения; зубчатые и червячные колеса; детали тормозных устройств; рабочие емкости и прочее.

3. В электротехнике многие виды пластмасс используют для производства корпусов приборов, изоляционного материала  и др.

4. В строительстве применяют сделанные из пластика несущие конструкции, отделочные и кровельные материалы, вентиляционные устройства, навесы, панели, двери, окна, рабочий инструмент и др.

5. В сельском хозяйстве из пластиковых полупрозрачных листов сооружают теплицы.

6. В медицине большинство аппаратов и приборов состоят из пластмассовых частей и деталей. А многие человеческие органы чаще всего заменяют их пластиковыми аналогами.

7. В быту полно изделий из пластика. Это — посуда, телевизоры, компьютеры, мобильные телефоны, обувь, одежда и др.    

 

маркировка пластмасс

 

 

Маркировка пластмасс

Умение правильно расшифровывать буквенную маркировку пластика необходимо хотя бы для того, чтобы не нанести непоправимый вред здоровью при пользовании изделиями из этого материала.

Некоторые виды пластика способны медленно разрушать организм человека. Отказаться от них полностью мы не сможем, но уменьшить отрицательное влияние вполне реально.

Внимательно изучайте товар, который планируете купить. Производитель обязан маркировать свои изделия. Если специальное обозначение отсутствует — это должно вас насторожить.

Сами пластмассы не являются канцерогенами, а ими могут быть некоторые вещества в них содержащиеся. Они добавляются производителями для получения тех или иных свойств материала.

Определиться с типом пластика возможно, если на изделии имеется соответствующая маркировка. Обозначение часто наносят в виде треугольника, стороны которого состоят из трех стрелок. Под фигурой – аббревиатура, а внутри – цифра. На промышленных продуктах маркировка обычно выштамповывается в своеобразных скобках. Например, это может выглядеть так: >PC<, >PUR<,  >PP/EPDM<, и др.

 

виды пластмасс

 

 

Виды и применение пластмасс

Разновидности пластика и их сфера применения основывается на том, какие полимеры являются базовыми – синтетические или природные. Эти материалы могут быть в виде термопластичных пластмасс (обратимыми по форме) и термореактивными (необратимыми).

Самыми распространенными в производстве и в быту являются следующие виды:

(1) PET или PETE – лавсан (полиэтилентерефталат). Чаще всего используется при изготовлении упаковок, обивок и одноразовых стаканчиков для холодных напитков. Не рекомендуется повторное применение и изготовление из него детских игрушек.

 

полиэтилентерефталат

 

(2) HDPE или PE HD  – так обозначается полиэтилен высокой плотности и полиэтилен низкого давления. Используют при изготовлении пластиковых пакетов, пищевых контейнеров, посуды, тары для моющих средств, ненагруженных деталей оборудования, покрытий, футляров и фольги. Относительно безопасен, но может выделять токсичное вещество (формальдегид).

 

HDPE пластик

 

(3) PVC или V — это маркировка поливинилхлорида (или просто — ПВХ). Используется только в технических целях при производстве химического оборудования, различных деталей, элементов напольных покрытий, изоленты, жалюзи, мебели, окон, труб и тары. Эти виды пластмасс при сжигании выделяют много ядовитых веществ. 

 

поливинилхлорид

 

(4) LDPE или PEBD – обозначение полиэтилена низкой плотности и высокого давления. Из него изготавливают пакеты, брезент, мусорные мешки, компакт-диски и линолеум. Относительно безопасен для человека, но вреден в плане экологии.  

 

LDPE полиэтилен высокого давления

 

(5) PP – маркировка полипропилена. Используют для изготовления детских игрушек, пищевых контейнеров, упаковок и медицинских шприцов. Идеальный материал для труб, элементов холодильного оборудования и деталей в автомобильной промышленности. Практически безвреден, хотя в некоторых случаях может выделяться формальдегид – ядовитый для здоровья человека газ. 

 

PP полипропилен

 

(6) PS – полистирол. Из него изготавливают сэндвич-панели, теплоизоляционные строительные плиты, оборудование, изоляционные пленки, стаканчики, чашки, столовые приборы, пищевые контейнеры, лоточки для различных видов продуктов. Не рекомендуется для повторного использования. В случае горения выделяет ядовитый стирол.

 

PS полистирол

 

(7) O или OTHER– полиамид, поликарбонат и другие виды пластмасс. Используют в производстве точных деталей машин, радио- и электротехники, аппаратуры, а также при изготовлении бутылок для воды, игрушек, бутылочек для детей и упаковок. При частом нагревании или мытье выделяют вещество (бисфенол А), ведущее к гормональным сбоям в человеческом организме.

 

OTHER полиамид

 

В строительстве часто используют следующие виды пластика:

Полимербетон. Это композиционный материал, созданный на основе термореактивных полимеров на основе эпоксидной смолы. Хрупкость этого пластика нивелируется волокнистыми наполнителями – стекловолокном и асбестом. Полимербетон применяется при изготовлении конструкций, стойких к различным агрессивным средам.

 

Полимербетон

 

Стеклопластик – листовой материал из тканей и стеклянных волокон, связанных полимером.

 

стеклопластик листовой

 

• Напольные материалы – это разные виды вязких жидких составов на основе полимеров и рулонные покрытия. Широко применяется в строительстве поливинилхлоридный линолеум. Он обладает хорошими теплозвукоизоляционными показателями.

 

поливинилхлоридный линолеум

К термореактивным видам пластмасс относятся:

Фенопласт. Применяется для изготовления вилок, розеток, пепельниц корпусов сотовых телефонов, радиоприборов и изделий галантереи.

 

розетка из фенопласта

 

Аминопласты. Используют в производстве электротехнических деталей, клея для дерева, пенистых материалов, галантереи и тонких покрытий для украшений.

 

пуговицы из аминопласта

 

Стекловолокниты. Они чаще всего, применяются в машиностроении для изготовления крупногабаритных изделий несложных форм (лодок, кузовов автомобилей, корпусов приборов и пр.) и силовых электротехнических деталей.

 

стекловолокниты

 

Полиэстеры – на их основе создают части автомобилей, спасательные лодки, корпусы летательных аппаратов, кровельные плиты для крыш, мебель, мачты для антенн, плафоны ламп, удочки, лыжи и палки, защитные каски и др.

 

материал полиэстер

 

Эпоксидная смола — применяется как изоляционный материал: в трансформаторах, электромашинах и приборах, в радиотехнике (для печатных схем) и при производстве телефонной арматуры.

 

 

эпоксидная смола

 

Производство

Основным сырьем при производстве пластмасс является этилен. С его помощью получают полиэтилен, полистирол и поливинилхлорид.

Нарушение технологии режима полимеризации, ухудшает качество готовой продукции. В ней могут появиться поры в виде пузырьков и разводов. Существуют следующие виды пористости пластмассы: гранулярная, газовая и пористость сжатия. Такие дефекты недопустимы при изготовлении продуктов влияющих на здоровье человека, например  съемных протезов. Для их изготовления используются базисные пластмассы (самотвердеющие, при смешивании специального порошка и жидкости, материалы).

Существует несколько основных технологий производства пластмассовых изделий:

1. Технология выдувания. Хорошо разогретая формовочная масса заливается в открытую опоку, после чего ее герметично закрывают. Затем туда подается  сжатый воздух, который распыляет горячий пластик по стенкам заданной формы.
2. Формовка посредством вакуума (процесс изготовления проводится с перепадами воздушного давления).
3. Технология литья. Жидкая пластмасса заливается в специальные емкости, в которых происходит охлаждение и  формовка материала.
4. Метод экструзии. Размягченную пластичную массу, продавливают через специальные отверстия в приспособление, которое формирует готовое изделие.
5. Прессование. Это самый распространенный способ получения продукции из термоактивных пластмасс. Формование выполняется в специальных опоках под воздействием высокого давления и температуры.

 

Источник: www.jonwai.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.