Сейсмические пояса земли образуются на границах


1. Авдейко Г.П., Палуева А.А., Лепиньч С.В. Сейсмоактивные тектонические структуры зоны субдукции под Восточную Камчатку // Вестник КРАУНЦ. Серия Науки о Земле. 2004. № 3. С. 18–35.

2. Апродов В.А. Зоны землетрясений. М.: Мысль, 2000. 461 с.

3. Викулин А.В. Физика волнового сейсмического процесса. Петро­павловск­Камчатский: Изд­во КГПУ, 2003. 151 с.

4. Гатинский Ю.Г., Рундквист Д.В., Владова Г.Л., Прохорова Т.В., Романюк Т.В. Блоковая структура и геодинамика континентальной литосферы на границах плит // Вестник КРАУЦ. Науки о Земле. 2008. № 1. Вып. № 11. С. 32–47.

5. Гольдин С.В., Селезнёв В.С., Еманов А.Ф., Филина А.Г., Еманов А.А., Новиков И.С., Гибшер А.С., Высоцкий Е.М., Агатова А.Р., Дядьков П.Г., Фатеев А.В., Кашун В.Н., Подкорытова В.Г., Лескова Е.В., Янкайтис В.В., Ярыгина М.А. Чуйское землетрясение 2003 года (М=7.5) // Вестник отделения наук о Зем­ле РАН (электронный научно­информационный журнал). 2003. № 1 (21). http://www.scgis.ru/russian/cp1251/h_dgggms/1­2003/screp­7.pdf.


6. Горбунова Е.А., Шерман С.И. Медленные деформационные волны в литосфере: фиксирование, параметры, геодинамический ана­лиз // Тихоокеанская геология. 2011 (в печати).

7. Добровольский И.П. Математическая теория подготовки и прогно­за тектонического землетрясения. М.: ФИЗМАТЛИТ, 2009. 240 с.

8. Дядьков П.Г., Кузнецова Ю.М. Аномалии сейсмического режима перед сильными землетрясениями Алтая // Физическая мезоме­ханика. 2008. Т. 11. № 1. С. 19–25.

9. Завьялов А.Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. М.: Наука, 2006. 254 с.

10. Зубков С.И. Предвестники землетрясений. М.: ОИФЗ РАН, 2002. 140 с.

11. Касахара К. Механика землетрясений. М.: Мир, 1985. 264 с.

12. Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 176 с.

13. Кучай О.А., Бушенкова Н.А. Механизмы очагов землетрясений Центральной Азии // Физическая мезомеханика. 2009. Т. 12. № 1. С. 17–24.

14. Маламуд А.С., Николаевский В.Н. Циклы землетрясений и тектонические волны. Душанбе: Изд­во «Дониш», 1989. 144 с.

15. Мячкин В.И. Процессы подготовки землетрясений. М.: Наука, 1978. 232 с.

16. Ризниченко Ю.В. Проблемы сейсмологии: Избранные труды. М.: Наука, 1985. 408 с.

17. Рогожин Е.А. Тектоника очаговых зон сильных землетрясений Северной Евразии конца ХХ столетия // Российский журнал наук о Земле. 2000. Т. 2. № 1. С. 37–62. doi:10.2205/1999ES000029.

18. Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск: Изд­во СО РАН, 1997. 144 с.


19. Соболев Г.А. Основы прогноза землетрясений. М.: Наука, 1993. 314 с.

20. Соболев Г.А. Динамика разрывообразования и сейсмичность // Тектонофизика сегодня. М.: ОИФЗ РАН, 2002. С. 67–78.

21. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.

22. Соболев Г.А., Тюпкин Ю.С., Смирнов В.Б., Завьялов А.Д. Способ среднесрочного прогноза землетрясений // Доклады АН. 1996. Т. 347. № 3. С. 405–407.

23. Уломов В.И. Волны сейсмогеодинамической активизации и долгосрочный прогноз землетрясений // Физика Земли. 1993. № 4. С. 43–53.

24. Чипизубов А.В. Реконструкция и прогноз изменений сейсмичности Земли. Иркутск: ИЗК СО РАН, 2008. 240 с.

25. Шерман С.И. Деструктивные зоны литосферы, их напряженное состояние и сейсмичность // Неотектоника и современная геодинамика континентов и океанов. М.: РАН, МТК, 1996. С. 157–158.

26. Шерман С.И., Семинский К.Ж., Черемных А.В. Деструктивные зоны и разломно­блоковые структуры Центральной Азии // Ти­хоокеанская геология. 1999. Т. 18. № 2. С. 41–53.

27. Aiming Lin, Jianming Guo. Prehistoric seismicity­ induced liquefaction along the western segment of the strike­slip Kunlun fault, Northern Tibet // Geological Society, London, Special Publications. 2009. V. 316. P. 145–154. doi:10.1144/SP316.8.

28. Allerton S., Macleod C.J. Fault-­controlled magma transport through the mantle lithosphere at slow­spreading ridges // Geological Society, London, Special Publications. 1998. V. 148. P. 29–42. doi:10.1144/GSL.SP.1998.148.01.03.


29. Avouac J.­Ph., Ayoub F., Leprince S., Konca O., Helmberger D.V. The 2005, Mw 7.6 Kashmir earthquake: Sub­pixel correlation of ASTER images and seismic waveforms analysis // Earth and Planetary Science Letters. 2006. V. 249. № 3–4. P. 514–528. doi:10.1016/j.epsl.2006.06.025.

30. Basudeo Rai. Himalayan seismicity and probability of future earthquake // IAGA WG 1.2 on Electromagnetic Induction in the Earth Proceedings of the 17th Workshop. Hyderabad, India, 2004. S.1–P.20. P. 1–11.

31. Burtman V.S., Skobelev S.F., Molnar P. Late Cenozoic slip on the Talas-­Ferghana fault, the Tien Shan, Central Asia // Geological Society of America Bulletin. 1996. V. 108. № 8. P. 1004–1021. doi:10.1130/0016-7606(1996)108<1004:LCSOTT>2.3.CO;2.

32. Bykov V.G. Strain waves in the Earth: Theory, field data, and models // Geologiya i geofizika (Russian geology and geophysics). 2005. V. 46. № 11. P. 1158–1170.

33. Calais E., Ebinger C., Hartnady C., Nocquet J.M. Kinematics of the East African rift from GPS and earthquake slip vector data // Geological Society, London, Special Publications. 2006. V. 259. P. 9–22. doi:10.1144/GSL.SP.2006.259.01.03.

34. Chaytor J.D., Goldfinger C., Dziak R.P., Fox C.G. Active deformation of the Gorda plate: Constraining deformation models with new geophysical data // Geology. 2004. V. 32. № . P. 353–356. doi:10.1130/G20178.2.


35. Coakley B.J., Cochran J.R. Gravity evidence of very thin crust at the Gakkel ridge (Arctic ocean) // Earth and Planetary Science Letters. 1998. V. 162. № 1–4. P. 81–95. doi:10.1016/S0012-821X(98)00158-7.

36. Console R., Murru M., Catalli F. Physical and stochastic models of earthquake clustering // Tectonophysics. 2006. V. 417. № 1–2. P. 141–153. doi:10.1016/j.tecto.2005.05.052.

37. Continental intraplate earthquakes: science, hazard, and policy issues / Ed. Stein S., Mazzotti S. Boulder: Geological Society of America, 2007. 402 p.

38. Denali Park, Alaska Earthquake of 3 November, 2002. U.S. Geological Survey. 2002. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2002/20021103.php.

39. Ekstrom G., Dziewonski A.M., Maternovskaya N.N., Nettles M. Global seismicity of 2003: centroid–moment­tensor solutions for 1087 earthquakes // Physics of the Earth and Planetary Interiors. 2005. V. 148. № 2–4. P. 327–351. doi:10.1016/j.pepi.2004.09.006.

40. Giner­Robles J.L., Gonzalez­Casado J.M., Gumiel P., Martin­Velazquez S., Garcia­Cuevas C. A kinematic model of the Scotia plate (SW Atlantic ocean) // Journal of South American Earth Sciences. 2003. V. 16. № 4. P. 179–191. doi:10.1016/S0895-9811(03)00064-6.

41. Guang Zhu, Guo Sheng Liu, Man Lan Niu, Cheng Long Xie, Yong Sheng Wang, Biwei Xiang. Syn­-collisional transform faulting of the Tan­-Lu fault zone, East China // International Journal of Earth Sciences. 2009. V. 98. № 1. P. 135–155. doi:10.1007/s00531-007-0225-8.


42. Jonsdottir K., Lindman M., Roberts R., Bjorn L., Bodvarsson R. Modelling fundamental waiting time distributions for earthquake sequences // Tectonophysics. 2006. V. 424. № 3–4. P. 195–208. doi:10.1016/j.tecto.2006.03.036.

43. Kasahara K. Migration of crustal deformation // Tectonophysics. 1979. V. 52. № 1–4. P. 329–341. doi:10.1016/0040-1951(79)90240-3.

44. Kim Y.­S., Choi J.­H. Fault propagation, displacement and damage zones // Conference Commemorating the 1957 Gobi­Altay Earthquake. Ulaanbaatar, Mongolia, 2007. P. 81–86.

45. M6.5 Offshore Northern California Earthquake of 10 January 2010. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2010/20100110.php.

46. M7.1 Macquarie Island, Australia Earthquake 12 April 2008. U.S. Geological Survey. 2008. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2008/20080412.php.

47. M7.2 Andreanof (Aleutian Islands), Alaska Earthquake of 19 December 2007. U.S. Geological Survey. 2007. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2007/20071219.php.

48. M7.2 Baja, Mexico, Earthquake of 4 April 2010. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2010/20100404.php.

49. M7.2 Gorda Plate Earthquake of 15 June 2005. U.S. Geological Survey. 2005. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2005/20050615.php.


50. M7.2 Solomon Islands Region Earthquake of 3 January 2010. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2010/20100103.php.

51. M7.3 Respublika Altay, Russian Federation Earthquake of 27 September 2003. U.S. Geological Survey. 2003. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2003/20030927.php.

52. M7.5 Mariana Islands Region Earthquake 28 September 2007. U.S. Geological Survey. 2007. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2007/20070928.php.

53. M7.6 and M7.4 Papua, Indonesia, Earthquakes of 3 January 2009. U.S. Geological Survey. 2009. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2009/20090103.php.

54. M7.6 Carlsberg Ridge Earthquake of 15 July 2003. U.S. Geological Survey. 2003. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2003/20030715.php.

55. M7.8 Northern Sumatra, Indonesia, Earthquake of 6 April 2010. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2010/20100406.php.

56. M7.8 Rat Islands, Alaska Earthquake of 17 November 2003. U.S. Geological Survey. 2003. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2003/20031117.php.

57. M8.3 Hokkaido, Japan Earthquake of 25 September 2003. U.S. Geological Survey. 2003. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2003/20030925.php.

58. M8.8 Maule, Chile, Earthquake of 27 February 2010. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2010/20100227.php.


59. Manaker D.M., Calais E., Freed A.M., Ali S.T., Przybylski P., Mattioli G., Jansma P., Prepetit C., de Chabalier J.B. Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean // Geophysical Journal International. 2008. V. 174. № 3. P. 889–903. doi:10.1111/j.1365­246X.2008.03819.x.

60. Mann P., Calais E., Ruegg J.­C., DeMets C., Jansma P.E., Mattioli G.S. Oblique collision in the Northeastern Caribbean from GPS measurements and geological observations // Tectonics. 2002. V. 21. № 6. 1057. doi:10.1029/2001TC001304.

61. McCue K. Seismic hazard mapping in Australia? The Southwest Pacific and Southeast Asia // Annali di Geofizica. 1999. V. 42. № 6. P. 1191–1198.

62. Nishizawa A., Kaneda K., Oikawa M. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan // Earth Planets Space. 2009. V. 61. № 8. P. e37–e40.

63. Panagiotopoulos D.G. Long­term earthquake prediction along the seismic zone of the Solomon Islands and New Hebrides based on the time­ and magnitude­predictable model // Natural Hazards. 1995. V. 11. № 1. P. 17–43. doi:10.1007/BF00613308.

64. Radha Krishna M., Arora S.K. Space-­time seismicity and earthquake swarms: certain observations along the slow­spreading mid­Indian ocean ridges // Journal of Earth System Science. 1998. V. 107. № 2. P. 161–173. doi:10.1007/BF02840467.


65. Reading A.M. On Seismic Strain­Release within the Antarctic plate // Antarctica. 2006. Theme 7. Chapter 7.1 / Eds. D.K. Futterer, D. Damaske, G. Kleinschmidt, H. Miller, F. Tessensohn. Berlin, Heidelberg: Springer. 2006. P. 351–356. doi:10.1007/3-540-32934-X_43.

66. Rodkin M.V. The problem of the earthquake source physics: Models and contradictions // Izvestiya, Physics of the Solid Earth. 2001. V. 37. № 8. P. 653–662.

67. Ruppert N.A., Lees J.M., Kozyreva N.P. Seismicity, earthquakes and structure along the Alaska­Aleutian and Kamchatka­Kurile subduction zones: a review // Volcanism and Subduction: The Kamchatka region. Geophysical Monograph Series. 2007. V. 172. P. 129–144.

68. Sato T., Ishimura Ch., Kasahara J., Maegawa K., Tatetsu H., Tanaka M. The seismicity and structure of Izu­Bonin arc mantle wedge at 31°N revealed by ocean bottom seismographic observation // Physics of the Earth and Planetary Interiors. 2004. V. 146. № 3–4. P. 551–562. doi:10.1016/j.pepi.2004.06.003.

69. Scholz C.H. The mechanics of earthguakes and faulting. 2nd ed. New York: Cambridge University Press, 2002. 496 p. doi:10.2277/0521655404.

70. Seismicity of the World (1977–2007). Earthquake Research Institute, the University of Tokyo. Tokyo Cartographic CO LTD. 2010.

71. Shanker D., Sharma M.L. Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files // Pure and applied geophysics. 1998. V. 152. № 2. P. 267–279. doi:10.1007/s000240050154.


72. Sherman S.I. New data on regularities of fault activation in the Baikal rift system and the adjacent territory // Doklady Earth Sciences. 2007. V. 415. № 5. P. 794–798. doi:10.1134/S1028334X07050303.

73. Sherman S.I. A tectonophysical model of a seismic zone: Experience of development based on the example of the Baikal rift system // Izvestiya, Physics of the Solid Earth. 2009. V. 45. № 11. P. 938–951. doi:10.1134/S1069351309110020.

74. Sherman S.I., Dem’yanovich V.M., Lysak S.V. Active faults, seismicity and fracturing in the lithosphere of the Baikal rift system // Tectonophysics. 2004. V. 380, № 3–4. P. 261–272. doi:10.1016/j.tecto.2003.09.023.

75. Sherman S.I., Gladkov A.S. Fractals in studies of faulting and seismicity in the Baikal rift zone // Tectonophysics. 1999. V. 308. № 1–2. P. 133–142. doi:10.1016/S0040-1951(99)00083-9.

76. Sherman S.I., Gorbunova E.A. Variation and origin of fault activity of the Baikal rift system and adjacent territories in real time // Earth science frontiers. 2008. V. 15, № 3. P. 337–347. doi:10.1016/S1872-5791(08)60069-X.

77. Sherman S.I., Gorbunova E.A. New data on the regularities of the earthquake manifestation in the Baikal seismic zone and their forecast // Doklady Earth Sciences. 2010. V. 435. № 2. P. 1659–1664. doi:10.1134/S1028334X10120238.

78. Sherman S.I., Lunina O.V. A new map representing stressed state of the upper part of the Earth’s lithosphere // Doklady Earth Sciences. 2001. V. 379. № 5. P. 553–555.


79. Tarr A.C., Rhea S., Hayes G., Villasenor A., Furlog K.P., Benz H. Poster of the seismicity of the Caribbean Plate and vicinity. U.S. Geological Survey. 2010. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/regions/caribbean.php.

80. The World Physical Map. Washington: National Geographic Society. 2005. Revised 2007.

81. Tolstoy M., Bohnenstiehl D.R., Edwards M.H., Kurras G.J. Seismic character of volcanic activity at the ultraslow­ spreading Gakkel ridge // Geology. 2001. V. 29. № 12. P. 1139–1142. doi:10.1130/0091-7613(2001)​029<1139:SCOVAA>​2.0.CO;2.

82. Tonga–Fiji Earthquakes of 19 August 2002 – Magnitude 7.6 and 7.7. U.S. Geological Survey. 2002. http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2002/20020819.php.

83. Utkucu Murat, Kanbur Zakir, Alptekin Omer, Sunbul Fatih. Seismic behaviour of the North Anatolian fault beneath the Sea of Marmara (NW Turkey): implications for earthquake recurrence times and future seismic hazard // Natural Hazards. 2009. V. 50. № 1. P. 45–71. doi:10.1007/s11069-008-9317-4.

84. Vashchilov Yu.Ya., Kalinina L.Yu. Deep­seated faults and lineaments, and the location of earthquake epicenters in the Russian Northeast on Land // Journal of Volcanology and Seismology. 2008. V. 2. № 3. P. 158–169. doi:10.1134/S0742046308030032.

85. Wang Zhenming. Seismic hazard and risk assessment in the Intraplate environment: The New Madrid seismic zone of the central United States // Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper 425. 2007. P. 363–374. doi:10.1130/2007.2425(24).

86. Xiaofei Chen. Preface to the special issue on the 2008 great Wenchuan earthquake // Earthquake Science. 2009. V. 22. № 2. P. 107–108. doi:10.1007/s11589-009-0107-1.

87. Xue Yan, Song Zhi­ping, Mei Shi­rong, Ma Hong­shen. Characteristics of seismic activity before several large Sumatra, Indonesia, earthquakes // Acta Seismologica Sinica. 2008. V. 21. № 3. P. 325–329. doi:10.1007/s11589-008-0325-y.

88. Yeats R.S., Sieh K., Allen C.R. The geology of Earthquakes. New York: Oxford University Press, 1977. 568 p.

89. Zamani A., Agh­Atabai M. Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach // Journal of Geodynamics. 2009. V. 47. № 5. P. 271–279. doi:10.1016/j.jog.2009.01.003.

90. Zhaohua Yu, Shiguo Wu, Dongbo Zou, Deyong Feng, Hanqing Zhao. Seismic profiles across the middle Tan­Lu fault zone in Laizhou Bay, Bohai Sea, Eastern China // Journal of Asian Earth Sciences. 2008. V. 33. № 5–6. P. 383–394. doi:10.1016/j.jseaes.2008.03.004.

Источник: www.gt-crust.ru

Самые крупные сейсмические пояса планеты и их характеристика

На земном шаре есть два главных сейсмических пояса, из которых фактически и состоит вся наша планета.

Тихоокеанский пояс

Тихоокеанский является самым молодым по сравнению с другими. Как считают ученые, он был образован в мезозойском периоде. Также этот пояс является крупнейшим – свыше 40 тыс. км. Он находится в Тихом океане, полностью его обрамляя.

В его состав входят свыше 100 морей, а также 34 вулканических острова.

Около 80% всех землетрясений и извержений вулканов приходится именно на Тихоокеанский пояс. Именно по этому, а также по площади и расположению пояс называют Тихоокеанским огненным кольцом Земли.

Альпийско-гималайский сейсмический пояс

Альпийско-гималайский полностью пересекает Африку и всю Европу. На его краях происходят самые опасные землетрясения и извержения вулканов. 

Например, в Китае в 1566 году из-за движения плит погибло свыше 800 тыс. человек, а Индии в 1737 году – 400 тыс. человек.

Альпийско-гималайский сейсмический пояс обхватывает горные местности более 30-ти стран: России, Индии, Китая, Франции, Турции, Армении, Румынии и многих других.

Характер распространения сейсмических волн

Характер распространения сейсмических волн в первую очередь зависит от упругих свойств и плотности породы литосферных плит. 

Все они делятся на три типа:

  1. Продольные волны – появляются в жидких, твердых и газовых веществах. Они наносят самый маленьких вред природе.

  2. Поперечные волны – они уже более сильные из-за своей обширности. Могут привести к землетрясениям 2 и 3 уровня. Проходят поперечные волны только через твердые и газообразные вещества.

  3. Поверхностные волны – самые сейсмоопасные. Возникают только в твердой поверхности земли.

Второстепенные сейсмические пояса планеты

Кроме главных сейсмических поясов, есть и второстепенные, имеющие небольшой радиус. Всего 5% землетрясений приходится на эти участки планеты, отсюда и название «второстепенные». Их всего три.

В Индийском океане

Пояс проходит через Аравийский полуостров и до Антарктики. Его географические пределы, это – Африка и Австралия. Он является самым спокойным по сравнению с другими. В Индийском океане самые маленькие зоны землетрясения.

В Атлантическом океане

Сейсмический пояс в Атлантическом океане распространяется от Гренландии, тянется вдоль Атлантики и доходят до архипелага Тристан-да-Кунья. Это единственное место, где все еще происходит передвижение литосферных плит, из-за чего там большая активность.

В районе Арктики

Вся зона Арктики является сплошным поясом. Он охватывает все ее части, хребты и архипелаги. Землетрясения этой зоны не оказывают влияния на жизнь людей по причине того, что эти территории, в силу климатических особенностей, малообитаемы. Толчки в земной коре в данной зоне не слишком велики.

Источник: nauka.club

Введение

Сейсмическими поясами земли называют места, где литосферные плиты планеты соприкасаются между собой. В этих зонах, где сейсмические пояса Земли образуются, наблюдается повышенная подвижность земной коры, вулканическая активность, обусловленная процессом горообразования, который длится тысячелетиями.

Протяженность этих поясов невероятно большая – пояса тянутся на тысячи километров.

Названия сейсмических поясов планеты

На планете существуют два больших сейсмических пояса: Средиземноморско-Трансазиатский и Тихоокеанский.

Названия сейсмических поясов планеты

Рис. 1. Сейсмические пояса Земли.

Средиземноморско-Трансазиатский пояс берет свое начало у берегов Персидского залива и заканчивается в середине Атлантического океана. Этот пояс еще называют широтным, так как он тянется параллельно экватору.

Тихоокеанский пояс – меридиональный, он тянется перпендикулярно Средиземноморско-Трансазиатскому поясу. Именно на линии этого пояса расположено огромное количество действующих вулканов, большая часть извержений которых происходит под толщей воды самого Тихого океана.

Если рисовать сейсмические пояса Земли на контурной карте – получится интересный и загадочный рисунок. Пояса, словно окаймляют древние платформы Земли, а иногда и внедряются в них. Они сопряжены с гигантскими разломами земной коры и древними, и более молодыми.

Средиземноморско-Трансазиатский сейсмический пояс

Широтный сейсмический пояс Земли проходит через Средиземное море и все прилегающие к нему горные европейские массивы, расположенные на юге континента. Он тянется через горы Малой Азии и Северной Африки, достигает горных хребтов Кавказа и Ирана, пролегает через всю Среднюю Азию и Гиндукуш прямо к Коэль- Луню и Гималаям.

В этом поясе, наиболее активными сейсмическими зонами считаются горы Карпаты, расположенные на территории Румынии, весь Иран и Белуджистан. От Белуджистана зона землетрясений тянется до Бирмы.

Рис.2. Средиземноморско -Трансазиатский сейсмический пояс

В этом поясе есть активные сейсмические зоны, которые расположены не только на суше, но и в водах двух океанов: Атлантического и Индийского. Частично этот пояс захватывает и Северный Ледовитый океан. Сейсмическая зона всей Атлантики проходит через Гренландское море и Испанию.

Тихоокеанский пояс

Но, как бы ни был опасен широтный сейсмический пояс, все же большая часть всех землетрясений (около 80%), которые происходят на нашей планете, приходится на Тихоокеанский пояс сейсмической активности. Этот пояс проходит по дну Тихого океана, по всем горным цепям, опоясывающим этот самый большой океан Земли, захватывает острова, расположенные в нем, включая Индонезию.

Сейсмические пояса земли образуются на границах

Рис.3. Тихоокеанский сейсмический пояс.

Самая огромная часть этого пояса – Восточная. Она берет начало на Камчатке, тянется через Алеутские острова и западные прибрежные зоны Северной и Южной Америк прямиком к Южно-Антильской петле.

Северная часть пояса наиболее сейсмически активна, что постоянно ощущают на себе жители Калифорнии , а также Центральной и Южной Америки.

Западная часть меридионального пояса берет свое начало на Камчатке, тянется к Японии и дальше.

Второстепенные сейсмические пояса

Не секрет, что во время землетрясений, волны от колебаний земной коры могут достигать отдаленных районов, которые принято считать безопасными в отношении сейсмической активности. В некоторых местах отголоски землетрясений не ощущаются вовсе, а в некоторых достигают нескольких баллов по шкале Рихтера.

Сейсмические пояса земли образуются на границах

Рис.4. Карта сейсмической активности Земли.

В основном эти зоны, чувствительные к колебаниям земной коры, находятся под толщей воды Мирового океана. Второстепенные сейсмические пояса планеты расположены в водах Атлантики, Тихого океана, Индийского океана и в Арктике. Большая часть второстепенных поясов приходится на восточную часть планеты, так, эти пояса тянуться от Филиппин, постепенно спускаясь к Антарктиде. Отзвуки толчков еще можно ощутить в Тихом океане, а вот в Атлантике почти всегда сейсмически спокойная зона.

Источник: obrazovaka.ru

Современные названия сейсмических поясов Земли

Согласно общепринятой географической теории, ныне на планете существует два крупнейших сейсмических пояса. В их число входит один широтный, то есть расположенный вдоль экватора, а второй – меридианный, соответственно, перпендикулярный предыдущему. Первый называется Средиземноморско-Трансазиатским и свое начало он берет примерно в Персидском заливе, а крайняя точка достигает середины Атлантического океана. Второй называется меридиональный Тихоокеанский, и проходит он в полном соответствии со своим именем. Именно в этих областях наблюдается наибольшая сейсмическая активность. Здесь имеют свое место горные образования, а также постоянно действующие вулканы. Если данные сейсмические пояса Земли просмотреть на карте мира, то становится понятно, что большинство извержений приходится именно на подводную часть нашей планеты.

Самый большое хребет в мире

Важно знать, что 80 процентов всех землетрясений и вулканических извержений приходится именно на Тихоокеанский горный хребет. Большая его часть расположилась под солеными водами, но он затрагивает и некоторые части суши. Например, на Гавайских островах, именно из-за раскола земной породы, постоянно происходят землетрясения, которые часто приводят к большому количеству человеческих жертв. Далее этот гигантский хребет включает в себя более мелкие сейсмические пояса Земли. Так, к нему относятся Камчатка, Алеутские острова. Он затрагивает западное побережье всего Американского континента и заканчивается аж на Южной Антильской Петле. Именно поэтому все жилые регионы, которые расположены вдоль этой линии, постоянно переживают более или менее сильные земные толчки. Среди наиболее популярных городов-гигантов, который находится в этой нестабильной области – Лос-Анджелес.

Сейсмические пояса земли. Названия менее распространенных из них

Теперь рассмотрим зоны так называемых вторичных землетрясений, или второстепенной сейсмичности. Все они достаточно плотно расположены в пределах нашей планеты, однако в некоторых местах отголоски совсем не слышны, в то время, как в других регионах толчки достигают чуть ли не максимума. Но стоит отметить, что данная ситуация присуща только тем землям, которые находятся под водами Мирового океана. Второстепенные сейсмические пояса Земли сосредоточены в водах Атлантики, в бассейне Тихого океана, а также в Арктике и в некоторых районах Индийского океана. Интересно, что сильные толчки, как правило, приходятся именно на восточную часть всех земных вод, то есть «Земля дышит» в районе Филиппин, постепенно спускаясь ниже, к Антарктиде. В некоторой степени очаги этих ударов распространяются и на воды Тихого океана, а вот в Атлантике практически всегда спокойно.

Более подробное рассмотрение данного вопроса

Как было сказано выше, сейсмические пояса Земли образуются именно в месте стыков наиболее крупных литосферных плит. Самым масштабным среди таковых является меридианный Тихоокеанский хребет, на всей длине которого насчитывается огромное количество горных возвышений. Как правило, очаг ударов, который вызывает толчки в этой природной зоне – подкоровый, поэтому распространяются они на очень большие расстояния. Наиболее сейсмически активной ветвью меридианного хребта является его северная часть. Тут наблюдаются крайне высокие удары, которые часто доходят до Калифорнийского побережья. Именно по этой причине количество небоскребов, которое возводится в данной области, всегда сводится к минимуму. Обратите внимание на то, что такие города, как Сан-Франциско, Лос-Анджелес, в общем-то, одноэтажные. Высотки возведены только в центре города. Направляясь ниже, к югу, сейсмичность данной ветки снижается. На западном побережье Южной Америки толчки уже не такие сильные, как на Севере, однако там все равно отмечаются подкорковые очаги.

Множество веток одного большого хребта

Названия сейсмических поясов Земли, которые являются ответвлениями от основного меридианного Тихоокеанского хребта, напрямую связаны с их географическим местоположением. Одна из веток – Восточная. Она берет свое начало у берегов Камчатки, проходит вдоль Алеутских островов, затем огибает весь Американский континент и заканчивается на Фолклендских островах. Данная зона не является катастрофически-сейсмической, и толчки, которые образуются в ее пределах, невелики. Стоит лишь отметить, что в районе экватора от нее уходит ответвление на Восток. Карибское море и все островные государства, которые здесь расположены, уже находятся в зоне Антильской сейсмической петли. В данном регионе ранее наблюдалось множество землетрясений, которые приносили немало бедствий, однако в наши дни Земля «успокоилась», и толчки, которые слышны и ощутимы на всех курортах Карибского моря, не представляют никакой опасности для жизни.

Небольшой географический парадокс

Если рассматривать сейсмические пояса Земли на карте, то получается, что восточная ветка Тихоокеанского хребта проходит вдоль самого западного побережья суши нашей планеты, то есть вдоль Америки. Западная же ветка того же сейсмического пояса начинается у Курильских островов, проходит через Японию, а после делится еще на две другие. Странно, что названия этим сейсмическим зонам были подобраны с точностью да наоборот. Кстати, те две ветки, на которые делится данная полоса, также имеют названия «Западной» и Восточной», но на сей раз их географическая принадлежность совпадает с общепринятыми правилами. Восточная уходит через Новую Гвинею к Новой Зеландии. В этом районе прослеживаются достаточно сильные подземные толчки, часто носящие разрушительный характер. Восточная ветка охватывает берега Филиппинских островов, южные острова Таиланда, а также Бирму, и в завершении соединяется со Средиземноморско-Трансазиатским поясом.

Краткий обзор «параллельного» сейсмического хребта

Теперь рассмотрим ту литосферную область, которая расположена ближе к нашему региону. Как вы уже поняли, название сейсмических поясов нашей планеты зависит от их расположения, и в данном случае Средиземноморско-Трансазиатский хребет тому подтверждение. В пределах его протяжности находятся Альпы, Карпаты, Апеннины и острова, расположенные в Средиземном море. Наибольшая сейсмическая активность приходится на Румынский узел, где довольно часто наблюдаются сильные толчки. Продвигаясь на Восток, данный пояс захватывает земли Белуджистана, Ирана и завершается в Бирме. Однако общий процент сейсмической активности, который приходится на эту область, равен всего лишь 15. Поэтому данный регион является вполне безопасным и спокойным.

Источник: FB.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.