Светодиодные лампы вредны для зрения


Светодиоды стали очень популярным источником света в последнее десятилетие. Они пришла на замену компактным люминесцентным лампам (КЛЛ) или, как их называют в народе — энергосберегайкам. Тогда и началась эра светодиодного освещение для человека.

Энергосберегающие лампы представляли относительную опасность, из-за содержащихся в их колбе паров ртути. В случае её разрушения, есть риск получить серьезный вред для вашего здоровья, вплоть до летального исхода. Мы же разберем – вредны ли светодиодные лампы для человека?

Вредны ли светодиодные лампы для здоровья

Источники вреда для здоровья

Чтоб доказать или опровергнуть вред светодиодных ламп для здоровья, определим источники ущерба для организма. Условно разделим их на 2 группы: характеристики прибора и неправильная эксплуатация.

Характеристики осветительного прибора, которые наносят вред организму:

  • Спектральные характеристики источника света;
  • излучения в инфракрасном спектре;
  • пульсации светового потока.

Вторая группа, это вред здоровью не от самого источника света, а от неправильного его использования. Давайте рассмотрим каждый фактор освещения, который влияет на ваше здоровье и определимся, вреден ли светодиодный свет для глаз.

Чем отличаются источники света

За эталон нужно принять солнечный свет, поскольку он содержит наиболее полный спектр светового излучения. Из всех искусственных осветительных приборов, наиболее приближена к солнцу лампочка накаливания. Сравните спектральные характеристики разных источников.

Спектр разных источников света

На графиках изображены различные спектры осветительных приборов. Лампа накаливания имеет гладкий спектр, возрастающий к области красных цветов. Спектр люминесцентных источников света довольно рваный, плюс низкий индекс цветопередачи (около 70).

Работа в помещениях с таким освещением вызывает повышенную усталость и головные боли, а также искаженное восприятие цвета.

Спектр светодиодных ламп более полный и ровный. Имеет повышенную интенсивность в области длин волн 450нм, для холодного свечения, и в области 600нм, для «тёплых» ламп соответственно. LED источники обеспечивают нормальную цветопередачу с индексом CRI более 80. Светодиодные лампы имеют крайне низкую интенсивность ультрафиолетового излучения.


Если сравнить спектр диодных и популярных люминесцентных ламп, становится понятно почему последние используются все реже. Спектр КЛЛ совершенно далеки от эталона, а их индекс цветопередачи оставляет желать лучшего.

На основании этого можно сделать вывод, что по характеристикам спектра светодиодные лампы безвредны для здоровья.

Почему лампы мерцают?

Следующий фактор, который влияет на самочувствие – это коэффициент пульсаций светового потока. Чтобы понять, что это такое и от чего он зависит нужно рассмотреть форму напряжения в электросети.

Качество света и его пульсация зависят от источника питания, от которого они работают. Источники света, которые работают от постоянного напряжения, например светодиодные лампы на 12 вольт, не мерцают. Давайте рассмотрим мерцание и вред светодиодных ламп для глаз, причины их возникновения и способы устранения.

График переменного напряжения

Из розетки мы получаем переменное напряжение с действующим значением 220В и 310В амплитудным, что вы можете видеть на верхнем графике (а).


Поскольку светодиоды питаются постоянным током, а не переменным – нужно его выпрямить. В корпусе светодиодной лампы размещена электронная схема с одно- или двухполупериодным выпрямителем, после которого напряжение становится однополярным. Оно постоянное по знаку, но не по величине, т.е. пульсирующим от 0 до 310 вольт, график посередине (б).

Такие лампы пульсируют с частотой 100 герц или 100 раз в секунду, в такт с пульсациями напряжения. Вред для глаз светодиодных ламп зависит от их качества, об этом далее.

Пульсируют ли светодиоды?

В светодиодных лампах используются драйвера со стабилизацией тока по величине (дорого), или сглаживающие фильтры (дешево). Напряжение становится постоянным и стабилизированным, если использованы емкостные фильтры.

Если производитель не сэкономил на драйвере – стабильным становится значение тока. Это лучший вариант как для уменьшения пульсации, так и для срока службы LED.

На фото ниже показано как выглядят пульсации взглядом камеры. Вы можете не замечать пульсации, поскольку органы зрения стремятся адаптировать картинку для восприятия. Мозг же эти пульсации прекрасно усваивает, что и вызывает усталость и другие побочные явления.

Обнаружение высокочастотных пульсация с помощью мобильного телефона

Влияние светодиодных ламп на зрение человека может быть негативным, если они выдают пульсирующий световой поток. Санитарные нормы ограничивают глубину пульсаций для офисных помещений на значении 20%, а для мест где ведется работа вызывающая зрительное напряжение и вовсе 15%.


Лампы с большими пульсациями не стоит устанавливать дома, они годятся разве что для освещения коридора, кладовой, подъездов и хозяйственных помещений. Любые помещения, где вы не выполняете никакой зрительной работы и не находитесь долго.

Вред от светодиодных ламп низкого ценового сегмента вызван в первую очередь пульсациями. Не экономьте на освещении, LED с нормальным драйвером стоит всего на 50-100 рублей дороже, чем самые дешевые китайские аналоги.

Другие источники света и их пульсации

Лампы накаливания не мерцают потому, что работают от переменного тока и нить накала не успевает остыть когда величина напряжения пересекает нулевую отметку. Люминесцентные трубчатые лампы мерцают, если подключены по старой «дроссельной» схем. Отличить её можно по характерному гулу дросселя во время работы. На фото ниже изображены пульсации растрового светильника, как их видит камера телефона.

Пульсации люминесцентных ламп

Современнее КЛЛ и ЛЛ не гудят и не мерцают только потому, что в их схеме используется импульсный блок питания высокой частоты. Такой источник питания называется ЭПРА (электронная пускорегулирующая аппаратура или устройство).

Вред инфракрасного спектра

Чтоб определить вредны ли светодиодные лампы для зрения, рассмотрим третий фактор вреда – инфракрасное излучение. Стоит отметить, что:


  • Во-первых, вредность ИК спектра сомнительна и не имеет основательной аргументации;
  • во-вторых, в спектре светодиодов инфракрасное излучение либо отсутствует, либо крайне мало. Убедиться можно на графиках, приведенных в начале статьи.

Вредны ли галогеновые лампы для здоровья?  В источниках света, богатых инфракрасным спектром (галогенки), ответственные производители (Philips, Osram и пр.) применяют ИК-светофильтры, поэтому их вред для здоровья сведен к минимуму.

Вред синего спектра

Научно доказано, что излучение в спектре синего цвета уменьшает выработку гормона сна – мелатонина и вредит сетчатке, вызывая в ней необратимые изменения.

Кроме падения уровня мелатонина, излучение синего цвета вызывает целый ряд побочных эффектов: усталость, повышенное зрительное напряжение, заболевание глаз. Этот цвет воспринимается ярче, что часто используется в маркетинге, для привлечения нашего внимания. Большинство индикаторов на колонках, ТВ, мониторах и пр. технике выполнены в синем цвете.


Повреждения сетчатки от синих светодиодов

Подробно об этом и насколько безопасны светодиодные лампы для глаз, пишут в сообществе.

Белые светодиоды – это синие светодиоды, покрытые специальным люминофором, который преобразует излучение в белый цвет.

Синий цвет — самый отрицательный фактор влияния светодиодных ламп на зрение. Взгляните на графики, а именно на спектр излучения светодиодов, представленный выше. Даже на Led лампе тёплого света есть пик яркости в синем спектре, а у холодной он очень высокий.

Практическая сторона проблемы

Значит вред светодиодных ламп для человека – это не миф? Не совсем так. Дело в том, что исследования проводились в условиях, когда исследуемые образцы засвечивались мощными синими светодиодами и весь их спектр был во «вредном» диапазоне.

Хоть в холодных светодиодах доля синего света и присутствует, но в солнечном свете она ничуть не меньше.

Современные люди любого возраста проводят очень много времени перед экраном компьютеров, смартфонов и планшетов. Несравнимо больший вред наносит зрению непрерывная фокусировка на расстоянии 0,3-1 метр от экрана.

Вред от мониторов


Вредность синего спектра светодиодных ламп, по сравнению с вредом от экранов устройств, незначительна. Для освещения комнаты, рабочего кабинета и других помещений потоком яркого света, с низким энергопотреблением, LED подходит идеально.

Если же вы переживаете, для снижения вреда синего излучения разработаны различные варианты линз и очков для работы за компьютером. Их светофильтры отражают свет в синем диапазоне и делают цвета более тёплыми.

Нужно помнить: не светодиоды вредны для здоровья человека, а неправильный режим работы с гаджетами и плохая освещенность.

Светодиоды — польза или вред?

Понять вредны светодиодные лампы или нет, можно занимаясь организацией правильного освещения согласно ГОСТ по освещению. В нем регламентируется количество света, для проведения работ разной точности и размера деталей, с которыми вы оперируете во время работы.

Светодиодные источники света позволяют добиться нужной яркости на рабочем месте, с минимальными счетами за электричество. Вы сохраните зрение, вам будет легче работать, когда в комнате светло и не нужно разглядывать мелкие детали в тусклом свете. В таком случае вредность светодиодных ламп для глаз минимальна.


Высокое энергопотребление старых ламп накаливания не выгодно как в государственных масштабах (большая нагрузка на ЛЭП), так и в индивидуальном (большое потребление и высокая цена электроэнергии).

Сегодня споры о том вредны ли светодиодные лампы для зрения, остаются открытыми и нельзя дать однозначный ответ. Они относительно недавно, менее 10 лет, заполнили рынок осветительных приборов и многие относятся к ним скептически.

Влияние светодиодных ламп на здоровье человека при правильном соблюдении режима дня, сна и работы будет нулевым. Если же человек подвержен стрессам, чрезмерным нагрузкам и несерьезно относится к качеству сна — ни один источник света не сохранит его здоровье.

Если у вас есть личный опыт, ссылка на интересный источник или вы хотите рассказать о вреде диодных ламп – делитесь в комментариях.

Источник: SvetodiodInfo.ru

Вредные вещества в LED-лампе

Для определения, насколько экологически чисты светодиодные лампы, рассмотрим, какие материалы используются при их производстве.

Корпус изготавливают из пластика, стали, сплавов алюминия. Колба, в которой находится плата с диодами, не герметична и не заполнена токсичными газами. В устройство лампочки входит драйвер.

Из перечисленного можно сделать вывод, что светодиодные лампы не более вредны, чем другие электронные устройства и могут утилизироваться как обычные бытовые отходы.

Опасность светодиодного освещения

Проведенные учеными исследования, позволили выяснить, что опасность представляет именно излучение светодиодов. При этом:


  • вред наносят синие и фиолетовые коротковолновые составляющие спектра;
  • зелёный свет менее вреден;
  • красный не наносит никакого вреда человеческому организму.

Светодиодные лампы оказывают отрицательное влияние на сетчатку глаза. Полученные травмы могут быть:

  • фотомеханическими (возникают при воздействии ударной волны световой энергии);
  • фототермическими (появляются при нагревании ткани в процессе облучения);
  • фотохимическими (вызывают химические изменения под воздействием потока света).

Отсюда следует, что смотреть на яркие светодиодные лампы опасно. Но такой же вывод можно сделать применительно к лампам накаливания или люминесцентным светильникам.

Производители снабжают источники освещения рассеивателями, плафонами, дающими мягкий свет. Благодаря этому, удается значительно снизить вред светодиодных ламп, наносимый здоровью человека.

Классификация степени опасности

Для того чтобы правильно оценить вред светового излучения необходимо обратиться к нормативным документам. Например, действующий в настоящее время, ГОСТ Р МЭК 62471-2013, описывает параметры светобиологической безопасности ламп и ламповых систем, в том числе и светодиодных устройств.

На основе данного стандарта были проведены исследования, позволившие установить, что:


  • наибольший вред здоровью человека наносят светодиоды синего свечения мощностью 15 Вт и выше, их относят к третьей группе риска;
  • опасность диода синего спектра с мощностью 0,07 Вт не велика, его можно отнести к первой группе;
  • при одинаковой цветовой температуре, в белых светодиодах излучения опасной синей составляющей на 20% больше, чем в других источниках света;
  • светодиодное освещение, используемое в быту, можно отнести ко 2 группе риска, если принять, что опасность ламп накаливания ограничивается нулевой или первой категорией.

Влияние на биосинтез мелатонина

Мелатонин – биологически активное вещество (гормон), вырабатывающееся в эндокринной железе, расположенной в голове человека. Влияет на обменные процессы и физиологические функции организма.

Ученые доказали, что любые яркие источники света подавляют секрецию мелатонина. Но большее воздействие оказывает именно интенсивный свет синего спектра, присутствующий в люминесцентных и светодиодных лампах.

В связи с этим, был разработан ряд рекомендаций, призванный уменьшить вред, получаемый при использовании энергосберегающих источников освещения. Ученые советуют:

  • для квартир использовать лампы накаливания, особенно в люстрах, располагающихся в спальнях;
  • за 2-3 часа до сна избегать влияния на зрение любых ярких источников;
  • работая за компьютером в темное время суток, применять специальные очки, не пропускающие синий спектр излучения;
  • для ночной подсветки в домах применять освещение красного цвета;
  • использовать продукцию только положительно зарекомендовавших себя, известных фирм-производителей;
  • применять светодиодные лампы только в светильниках, специально для них предназначенных.

При этом для работы в офисе предпочтительнее именно холодный спектр освещения, тонизирующий и повышающий работоспособность человека.

Вред от мерцания ламп

Частота мерцания 300 Гц энергосберегающих ламп отрицательно влияет на нервную систему человека. Снижается его работоспособность, увеличивает раздражительность и утомляемость, нарушается гормональный фон, сбиваются суточные ритмы.

Но, если на выходе драйвера напряжение проходит дополнительную качественную фильтрацию, освобождаясь от переменной составляющей, величина пульсации не превысит допустимых 10%. Поэтому лучше приобретать светодиодные лампы с качественными драйверами, не экономя на стоимости приборов.

Опасность белого света

Несмотря на то, что существуют белые светодиоды, в настоящее время нет полупроводников, излучающих белый свет. Его получают двумя способами:

  • сочетая красный, зеленый и синий светодиоды;
  • совмещая излучения синего, фиолетового, ультрафиолетового диапазона и люминофора (эффект фотолюминесценции).

Глаза человека наиболее чувствительны к синему спектру. Длительное излучение может привести к деградации сетчатки. Особенно большой вред белый свет наносит глазам детей.

Снизить негативное влияние поможет включение в светильник с несколькими патронами маломощных ламп накаливания на 40 – 60 Вт, LED-ламп тёплого белого света.

Приобретать лучше устройства, цветовая температура которых находится в диапазоне 2700 – 3500 К. Этот спектр излучения наиболее близок к солнечному свету во время захода солнца. Особенно важно соблюдение этих условий для детей, так как неокрепший организм ребенка наиболее уязвим для неблагоприятных факторов.

Электромагнитное излучение

Драйверы светодиодных источников освещения генерируют высокочастотные импульсы, создавая электромагнитные помехи в окружающем пространстве.

Этот факт может повлиять на работу некоторых электронных устройств: радиоприёмников, телевизоров, WI-FI передатчиков. Важно располагать данные приборы не ближе 40 см от источника помех.

Вред от электромагнитного излучения LED-лампы значительно меньше, чем вред от мобильного телефона. Возникающая опасность незначительна для человека, ею можно пренебречь.

Использование в растениеводстве

Из-за отсутствия нагрева светодиодные лампы не оказывают отрицательного влияния на растения, поэтому активно используются в дополнительном освещении при выращивании рассады разных культур. Даже расположив источник всего в 1 см от побегов, можно не беспокоиться о термических ожогах или о полной гибели посева.

Светодиоды в фитолампе сочетают несколько цветов. Для каждого характерно своё полезное действие:

  • жёлтый поставляет энергию, запускает фотосинтез;
  • синий способствует развитию и укреплению корневой системы;
  • красный улучшает всхожесть семян, способствует формированию соцветий.

По мере роста комбинацию спектра корректируют, в соответствии с периодом развития растения.

Применение в животноводстве

Свет играет важнейшую роль для жизни животных. Недостаток естественного освещения легко компенсируют светодиодные лампы.

Используя многообразие цветового спектра диодных источников, можно влиять на процессы, происходящие в организме животного, добиваясь улучшения жизненных показателей.

Днём лучше использовать коротковолновое излучение, вызывая, например, у коров состояние бодрости, что благотворно сказывается на росте и созревании молодняка и на увеличении молочной продуктивности. Ночью в помещениях включают красную подсветку, что делает сон животных более спокойным.

Заключение

Сравнивая пользу и вред светодиодных ламп, можно сделать вывод, что они значительно превосходят другие виды приборов освещения практически по всем параметрам, а вред от их использования незначителен.

Материалы по теме:

  • Чем опасны провалы напряжения в сети
  • Что такое пульсация светодиодных ламп
  • Охранные зоны линий электропередач

Источник: elektrik-sam.ru

Светодиодные лампы в последнее время стало популярной темой для обсуждения преимуществ новых энергосберегающих технологий в освещении. Что касается экономии электроэнергии, то всем уже хорошо известно о преимуществах, которые имеют светодиодные лампы.
Но, …

Но, оказывается, светодиодные лампы может принести определенную пользу здоровью человека.
Люминесцентные, металлогалогенные лампы и другие газоразрядные лампы, а также лампы накаливания создают колебания светового потока не видимые для человеческого глаза. Иногда, как в случае с люминесцентными лампами, где частота колебаний не слишком высока, можно заметить мерцание ламп. Понятно, что человеческий глаз будет быстрее уставать под воздействием такого освещения. Последствием такой ежедневной усталости может стать ухудшение зрения.
Самыми безвредными для человеческих глаз из вышеперечисленных типов ламп являются галогенные лампы. Частота мерцаний таких ламп наиболее высока. Самые вредные – люминесцентные лампы. У этих ламп наиболее низкая частота колебаний.
Что касается светодиодных ламп, то светодиоды, как источник света не создают вредных для глаза колебаний.
Свет светодиодных ламп чистый и не содержит вредных UV-излучений. Конечно, современные галогенные и металлогалогенные лампы, как источники повышенного UV-излучения, имеют в составе стекла UV-фильтры. Но даже эти меры безопасности позволяют лишь свести к минимуму вредное излучение.
Напомню, что ультрафиолетовое излучение может являться причиной онкологических заболеваний. Поэтому, известные производители, такие как BLV, PHILIPS, OSRAM, GE, в обязательном порядке используют фильтры для своих ламп. Светодиодным лампам, как вы поняли, фильтры не нужны.
Источником повышенной опасности для здоровья человека в США признаны люминесцентные лампы, в том числе КЛЛ (компактные люминесцентные лампы). Дело в том, что пары ртути, содержащиеся в люминесцентных лампах, могут, если лампа разобьется, стать причиной серьезных заболеваний или даже летального исхода. Это не шутки! В Америке уже подано несколько исков против производителей люминесцентных ламп!
Светодиодные лампы не принесут никакого вреда человеческому организму, даже если разобьются. Светодиоды не токсичны и не выделяют каких-либо вредных веществ в атмосферу.
Светодиодные лампы состоят не только из светодиодов. Составными частями светодиодных ламп являются алюминиевые рефлекторы, металлические цоколи, детали микросхем устройств питания светодиодов, стекло.
Алюминиевые изделия, если речь идет о посуде или столовых приборах, могут при многолетнем использовании нанести вред здоровью. Алюминий со временем накапливается в организме и может стать причиной серьезных нарушений обменных процессов. Однако, мы же не собираемся есть светодиодными лампами!
Что касается других потенциально опасных частей светодиодных ламп, то стекло, используемое в светодиодных лампах типа «шар», «свеча» или светодиодных лампах Т8 -вовсе не стекло. Это тонкий светопрозрачный пластик, который, даже если разобьется, никого не порежет!
Детали микросхем, используемые в светодиодных лампах, конечно, могут содержать тяжелые металлы или другие вредные соединения. Но получить серьезное отравление этими количествами вредных веществ можно только при длительном непосредственном контакте или употреблении в пищу.
Светодиодные лампы не имею инфракрасного излучения. Само по себе инфракрасное излучение, как говорят ученые, безвредно для человека. Но, по-моему, чем меньше любых излучений, тем лучше. Отсутствие в свете светодиодных ламп инфракрасного спектра оказывается очень полезным с другой точки зрения. При освещении светодиодными лампами различных объектов свет светодиодных ламп не создает помех для инфракрасных датчиков и видеокамер. Предприятия, предлагающие охранные системы, уже обратили внимание на этот положительный момент.
Все же стоит быть честным и сказать о том, что светодиодные лампы создают радиопомехи для приемников FM-диапазона. Этот удивительный факт мы обнаружили недавно, в ходе замены у себя в офисе вышедшей из строя лампы накаливания на светодиодную лампу. Рядом с местом установки светодиодной лампы, на расстоянии не более 1 метра, находился FM-приемник. Видимо, устройство питания лампы дает эти помехи. В общем, FM радиоволны не являются источником опасности для здоровья человека. Однако, предупредить о таком факте все же необходимо.
Еще одной положительной характеристикой светодиодных ламп является отсутствие теплового излучения. Светодиоды выделяют тепло, но оно поглощается алюминиевым рефлектором светодиодной лампы. Количество выделяемого тепла в разы меньше, чем у ламп накаливания или «галогенок».
Резюмируя все вышесказанное, светодиодные лампы практически безвредны для здоровья человека. Самую большую пользу светодиодные лампы при использовании в освещении помещений могут принести человеческому зрению. Здесь и отсутствие мерцания и вредных излучений. Также, светодиодные лампы помогут избежать вредных воздействий на кожу. А если так случится, что светодиодная лампа разобьется, то вы не отравитесь парами ртути, как в случае с КЛЛ.

Источник: www.drive2.ru

Положительная сторона светодиодных ламп

Данный осветительный прибор является высокотехнологическим продуктом. Срок службы — впечатляющий. Устройства работают в течение 2–4 лет, не теряя свои первоначальные характеристики. Качество освещения со временем не изменяется.

Положительные стороны осветительных приборов:

  • Большой рабочий ресурс. При беспрерывном продолжительном использовании устройство будет работать до 100 000 часов.
  • Осветительный прибор потребляет в 10 раз меньше энергии, чем у ламп накаливания и в 3 раза меньше, чем у люминесцентных ламп.
  • С экологической точки зрения осветительные приборы безопасны. В них отсутствуют вредные вещества. Ртути нет, значит можно утилизировать с другим мусором.
  • Не излучают ультрафиолет, который больше всего негативно сказывается на здоровье глаз.
  • Они не нагреваются в процессе работы. Выделяют минимум тепла. Но такие устройства нуждаются в дополнительной системе кондиционирования.
  • Осветительные приборы обладают высоким процентом ударостойкости. Если случайно выпадет из рук, то не распадется на мелкие кусочки.
  • Нагревается через несколько секунд и готова к полноценной работе.

Отрицательная сторона светодиодных ламп

Светодиодное освещение стало чрезвычайно популярным из-за энергосберегающих преимуществ, но оно не полезно для зрительного анализатора человека. Светодиодные лампы приносят больше вреда, чем пользы.

Вред светодиодных ламп для глаз и зрения

Любой источник освещения, по сути, является излучением и считается угрозой для здоровья глаз, но не все частоты одинаково вредны. Освещение от LED очень низкочастотное, подобно солнечному свету. Оно может отрицательно сказаться на глазах, светодиодное освещение не содержит ультрафиолетовых лучей (УФ), которые могут быть вредны и привести к катаракте.

Однако если глаза регулярно подвергаются действию таких осветительных приборов, возможна серьезная угроза оптической системе.

Бытовые светодиодные лампы имеют температурную цветность от 3000 К до 6500 К. Свет от них не теплый, а естественный белый и холодный белый.

Освещение от светодиодов способно привести к фотохимическому повреждению, которое вызвано химической реакцией поглощения ультрафиолетового, инфракрасного излучения или видимого света. Фотохимическое повреждение связано с возрастной макулярной дегенерацией — одной из ведущих причин слепоты.

Смотреть долго на LED наивысшей мощности нельзя. Одна из особенностей осветительных приборов — высокая яркость излучения. Это приводит к повреждению клеток, которые защищают сетчатку.

Исходя из этого, следует, что лишь при постоянном воздействии светодиодных ламп на глаза возможен вред.

Светодиодные устройства пульсируют. Мерцание влияет на состояние человека в целом, появляется головокружение, тошнота, болезненность в глазах. Постоянное мерцание приводит к более тяжелым последствиям. Перед глазами появляются яркие вспышки, вокруг предметов круги.

Пульсация зависит от источника освещения. В LED лампах есть специальные стабилизаторы, влияющие на величину или сглаживание. Движение электрического заряда в проводнике становится стабильным, но пульсация все равно присутствует.

Мерцание негативно сказывается на функционировании центральной нервной системы. Невидимые пульсации проникают в головной мозг и ухудшают здоровье в целом.

Сократить подобное влияние на организм можно, покупают качественные изделия. LED лампы, удовлетворяющие санитарным нормам, которые действуют на территории РФ с низкой частотой мерцания.

Влияние спектра освещения на глаза

Если сравнивать со светом Солнца, то излучение от LED ламп имеет похожий полный спектр. Но в последних синий спектр освещения выше.

Повышенные показатели в данном спектре негативно сказываются на зрительном восприятии человека. Это экспериментально доказано, но пока только на животных. Клетки окружали 6 светодиодных светильников, работающих по 16 часов в сутки.

Животных разделили на 3 группы:

  • контрольная — не подвергалась воздействию LED излучения;
  • вторая группа подвергалась воздействию светодиодного освещения;
  • третья группа подвергалась светодиодному излучению аналогично второй, но устранили процент фиолетового и синего спектра.

Вред светодиодных ламп для глаз и зренияПроводилась оценка количества нейронов, присутствующих в сетчатке животных 2 и 3 группы. Полученные результаты сопоставили с показаниями 1 группы — контрольной. Проведено исследование экспрессии генов, что объясняет процесс гибели клеток в сетчатке.

Результаты показали, что 23% клеток сетчатки погибли у второй группы. Следует учитывать, что они подвергались воздействию в течение 3 месяцев. Это высокие показатели.

Кроме того, нарушается синтез метанонина. Повышается астенопия и зрительное напряжение.

В LED светильниках с белым цветом самый коротковолновой диапазон видимого излучения на высоком уровне. Работать с ними долго нельзя, вредят зрению.

В Light-Emitting Diode с желтым светом, синий спектр есть, но на уровне солнечного излучения. Такое соотношение считается нормой. Такие светодиодные устройства не вредят зрению человека.

Почему дети особенно подвержены риску повреждения глаз

Физиология человека защищает себя от света в целом естественными пигментами глазного дна (макулы) и хромофорами в хрусталике. У детей до 4 лет макула недоразвитая.

По этой причине дети имеют прозрачный хрусталик, тогда как у взрослых он содержит желтые хромофоры, которые преграждают проникновение синего и фиолетового спектра.

Источник: proglazki.ru

Сравнительный анализ солнечного и искусственного освещения

В основе оценки светобиологической безопасности источника света лежит теория рисков и методология количественной оценки предельных норм воздействия опасного синего света на сетчатку глаза. Предельные значения показателей светобиологической безопасности рассчитываются для установленного предела облучения диаметра зрачка 3 мм (площадь зрачка 7 мм2). Для этих значений диаметра зрачка глаза определены значения функции B(λ) — взвешенная спектральная функция опасности от синего света, максимум которой приходится на спектральный диапазон излучения 435-440 нм.
Теория рисков негативного влияния света и методология расчетов фотобиологической безопасности была разработана на базе основополагающих статей основателя фотобиологической безопасности искусственных источников света доктора Дэвида Слини (David H. Sliney).

Дэвид Слини (David H. Sliney) в течение многих лет был руководителем отдела Центра по укреплению здоровья и профилактической медицины армии США и возглавлял проекты по фотобиологической безопасности. В 2007 году он закончил службу и вышел на пенсию. Его научные интересы сосредоточены на предметах, связанных с УФ-воздействием на глаза, взаимодействий лазерного излучения и тканей, лазерных опасностей и применения лазеров в медицине и хирургии. Дэвид Слини служил в качестве члена, консультанта и председателя многочисленных комиссий и учреждений, которые разрабатывали стандарты безопасности для защиты от неионизирующих излучений, в частности от лазеров и других высокоинтенсивных источников оптического излучения (ANSI, ISO, ACGIH, IEC, ВОЗ, НКРЗ, и ICNIRP). Он, в соавторстве издал Справочник «Безопасность с лазерами и другими оптическими источниками», Нью-Йорк, 1980. В 2008-2009 годах доктор Дэвид Слини служил президентом Американского общества по фотобиологии.

Разработанные Дэвидом Слини основополагающие принципы лежат в основе современной методологии фотобиологической безопасности искусственных источников света. Этот методологический паттерн автоматически перенесен и на светодиодные источники света. На нем воспитана большая плеяда последователей и учеников, которые продолжают распространять эту методологию на светодиодное освещение. В своих трудах они пытаются через классификацию рисков обосновывать и продвигать светодиодное освещение.
Их работы поддерживают Philips-Lumileds, Osram, Cree, Nichia и другие производители светодиодного освещения. В настоящее время в сферу интенсивных исследований и анализа возможностей (и ограничений) в области светодиодного освещения вовлечены:

• государственные учреждения, такие как Минэнерго США, Минэнерго РФ;

• общественные организации типа Illuminating Engineering Society of North America (IESNA), Alliance for Solid-State Illumination and Technologies (ASSIST), International Dark-Sky Assosiation (IDA) и НП ПСС РФ;

• крупнейшие фирмы-производители Philips-Lumileds, Osram, Cree, Nichia и
российские производители «Оптоган», «Светлана Оптоэлектроника»;

• а также ряд НИИ, университетов, лабораторий: Lighting Research Center at Rensselaer Polytechnic Institute (LRC RPI), National Institute of Standards and Technology (NIST), American National Standard Institute (ANSI), а также НИИИС им. А.Н.Лодыгина«, ВНИСИ им. С.И. Вавилова.

С точки зрения определения избыточной дозы синего света представляет интерес работа «Оптическая безопасность светодиодного освещения» (CELMA‐ELC LED WG(SM)011_ELC CELMA position paper optical safety LED lighting_Final_July2011). В этом европейском отчете в соответствии с требованием стандарта EN 62471 проведено сравнение спектров солнечного света со светом искусственных источников света (лампой накаливания, люминесцентными и светодиодными лампами). Через призму современной парадигмы гигиенической оценки рассмотрим представленные в этом европейском отчете данные с целью определения избыточной доли синего света в спектре светодиодного источника белого света. На рис. 1 представлен спектральный паттерн светодиода белого света, который состоит из кристалла, излучающего синий свет, и желтого люминофора, которым он покрыт для получения белого света.

 

Рис. 1. Спектр света белого светодиода.

 

Рис. 1. Спектр света белого светодиода.

На рис. 1. также указаны реперные точки, на которые должен обращать внимание гигиенист при анализе спектра света от любого источника. С этой точки зрения рассмотрим спектры солнечного света (рис. 2).

 

Рис.2. Спектр солнечного света в зависимости от времени суток.

 

Рис.2. Спектр солнечного света в зависимости от времени суток.

Из рисунка видно, что в интервале цветовой температуры от 4000 К до 6500 К соблюдаются условия «меланопсинового креста». На энергетическом спектре света амплитуда (А) на 480 нм должна быть всегда больше, чем амплитуда на 460 нм и 450 нм.

При этом доза синего света 460 нм в спектре солнечного света с цветовой температурой 6500 К на 40% больше, чем у солнечного света с цветовой температурой 4000 К.

Эффект «меланопсинового креста» наглядно виден из сравнения спектров ламп накаливания и светодиодной лампы с цветовой температурой 3000 К (рис.3).

 

Рис. 3. Эффект «меланопсинового креста»

 

Рис. 3. Эффект «меланопсинового креста»

Избыточная доля синего света в спектре светодиодного спектра по отношению к доле синего света в спектре лампы накаливания превышает более 55%.

Учитывая выше сказанное, сравним солнечный свет при Тк = 6500 К (6500 К-предельная цветовая температура для сетчатки глаз по Дэвиду Слини, а по санитарным нормам менее 6000 К) со спектром лампы накаливания Тк =2700 К и спектром светодиодной лампы с Тк =4200 К при уровне освещенности 500 люкс. (рис. 4).

 

Рис. 4. Сравнение спектров солнечного спектра, лампы накаливания и светодиодных ламп.

 

Рис. 4. Сравнение спектров солнечного спектра, лампы накаливания и светодиодных ламп.

Из рисунка видно следующее:

— светодиодная лампа (Тк = 4200 К) имеет выброс на 460 нм больше, чем у солнечного света (6500 К);

— в спектре света светодиодной лампы (Тк = 4200 К) провал на 480нм на порядок (в 10 раз) больше, чем в спектре солнечного света (6500 К);
— в спектре света светодиодной лампы (Тк = 4200 К) провал на 480 нм в разы больше, чем в спектре света лампы накаливания (Тк = 2700 К).

Известно, что при светодиодном освещении диаметр зрачка глаза превышает предельные значения — 3 мм (площадь 7 мм2) по ГОСТ Р МЭК 62471-2013 «Лампы и ламповые системы. Светобиологическая безопасность».

Из данных, приведенных на рис.2, видно, что доза синего света 460 нм в спектре солнечного света для цветовой температуры 4000 К намного меньше, чем доза синего света 460 нм в спектре солнечного света при цветовой температуре 6500 К.

Из этого следует, что дозы синего света 460 нм в спектре светодиодного освещения с цветовой температурой 4200 К будет значительно (на 40%) превышать дозу синего света 460 нм в спектре солнечного света с цветовой температурой 4000 К при одинаковом уровне освещенности.

Эта разница между дозами и составляет избыточную дозу синего света при светодиодном освещении относительно солнечного света с той же цветовой температурой и заданным уровнем освещенности. Но эта доза должна быть дополнена дозой синего света от эффекта неадекватности управления зрачком в условиях светодиодного освещения с учетом неравномерности распределения пигментов, поглощающих синий свет 460 нм, по объему и площади. Именно избыточная доза синего света приводит к ускорению деградационных процессов, которые увеличивают риски раннего ухудшения зрения по сравнению с солнечным светом при прочих равных условиях (заданного уровня освещенности, цветовой температурой и эффективной работы желтого пятна сетчатки и т.п.)

Физиологические особенности строения глаза, влияющие на безопасное восприятие света

Схема защиты сетчатки глаза сформировалась в условиях солнечного света. При спектре солнечного света происходит адекватное управление диаметром зрачка глаза на закрытие, что приводит к уменьшению дозы солнечного света, попадающего на клетки сетчатки. Диаметр зрачка у взрослого человека изменяется от 1,5 до 8 мм, что обеспечивает изменение интенсивности падающего на сетчатку света примерно в 30 раз.
Уменьшение диаметра зрачка глаза приводит к уменьшению площади световой проекции изображения, которая не превышает площадь «желтого пятна» в центре сетчатки. Защита клеток сетчатки от синего света осуществляется пигментом желтого пятна (с максимум поглощения 460 нм) и формирование которого имеет свою эволюционную историю.

У новорожденных область желтого пятна светло-желтого цвета с нечеткими контурами.

С трех месячного возраста появляется макулярный рефлекс и уменьшается интенсивность желтого цвета.
К одному году определяется фовеолярный рефлекс, центр становится более темным.

К трех — пятилетнему возрасту желтоватый тон макулярной области почти сливается с розовым или красным тоном центральной зоны сетчатки.

Область желтого пятна у детей 7-10 лет и старше, как и у взрослых, определяется по бессосудистой центральной зоне сетчатки и световым рефлексам. Понятие «желтое пятно» возникло в результате макроскопического исследования трупных глаз. На плоскостных препаратах сетчатки видно небольшое пятно желтого цвета. Долгое время химический состав пигмента, окрашивающего эту зону сетчатки, был неизвестен.

В настоящее время выделены два пигмента — лютеин и изомер лютеина зеаксантин, которые называют пигментом желтого пятна, или макулярным пигментом. Уровень лютеина выше в местах большей концентрации палочек, уровень зеаксантина — в местах большей концентрации колбочек. Лютеин и зеаксантин относятся к семейству каротиноидов группе натуральных пигментов растительного происхождения. Считается, что лютеин выполняет две важные функции: во-первых, он поглощает вредный для глаз голубой свет; во-вторых, является антиоксидантом, блокирует и удаляет образующиеся под действием света активные формы кислорода. Содержание лютеина и зеаксантина в макуле распределено по площади неравномерно (в центре максимум, а по краям в разы меньше), это значит и защита от синего света (460 нм) минимальна по краям. С возрастом количество пигментов снижается, в организме они не синтезируются, их можно получить только с пищей, поэтому общая эффективность защиты от синего света в центре желтого пятна зависит от качества питания.

Эффект неадекватности управления зрачком

На рис. 5. приведена общая схема сравнения проекций светового пятна галогенной лампы (по спектру близка к солнечному спектру) и светодиодной лампы. При светодиодном свете площадь засветки больше, чем от галогенной лампы.

 

Рис. 5. Сравнение площади световой засветки сетчатки галогенной и светодиодной лампой.

 

Рис. 5. Сравнение площади световой засветки сетчатки галогенной и светодиодной лампой.

По разнице выделенных площадей засветки рассчитывается дополнительная доза синего света от эффекта неадекватности управления зрачком в условиях светодиодного освещения с учетом неравномерности распределения пигментов, поглощающих синий свет 460 нм, по объему и площади. Данная качественная оценка избыточной доли синего света в спектре белых светодиодов может стать методической основой для количественных оценок в будущем. Хотя из этого ясно техническое решение о необходимости заполнения провала в области 480 нм до уровня ликвидации эффекта «меланопсинового креста». Такое решение было оформлено в виде авторского свидетельства на изобретение (Светодиодный источник белого света с комбинируемым удаленным фотолюминесцентным конвектором. Патент № 2502917 от 30.12.2011.). Это обеспечивает приоритет России в области создания светодиодных источников белого света с биологически адекватным спектром.

К большому сожалению, эксперты Минпромторга РФ данное направление не приветствуют, что является основанием не финансировать работы в данном направлении, которое касается не только общего освещения (школ, роддомов и т.п.), но и подсветку мониторов и автомобильных фар.

При светодиодном освещении происходит неадекватное управление диаметром зрачка глаза, что создает условия для получения избыточной дозы синего света, которая негативно воздействует на клетки сетчатки (ганглиозные клетки) и ее сосуды. Негативное воздействие избыточной дозы синего света на эти структуры потверждено работами ФГБУН Институт биохимической физики им. Н.М. Эмануэля РАН и ФАНО.

Выше выявленные эффекты по неадекватному управлению диаметром зрачка глаза рапространяются на люминесцентные и энергосберегающие лампы (рис. 6). При этом имеет место быть повышенная доля УФ-света при 435 нм («Оптическая безопасность светодиодного освещения» CELMA‐ELC LED WG(SM)011_ELC CELMA position paper optical safety LED lighting_Final_July2011)).

 

Рис.6. Спектры люминесцентных ламп с различными значениями коррелированной цветовой температуры.

 

Рис.6. Спектры люминесцентных ламп с различными значениями коррелированной цветовой температуры.

В ходе экспериментов и измерений, проведенных в школах США, а также в российских школах (НИИ гигиены и охраны здоровья детей и подростков НЦЗД РАМН) было установлено, что с уменьшением коррелированной цветовой температуры искусственных источников света увеличивается диаметр зрачка глаза, что создает предпосылки для негативного воздействия синего света на клетки и сосуды сетчатки. С увеличением коррелированной цветовой температуры искусственных источников света уменьшается диаметр зрачка глаза, но не достигает значений диаметра зрачка при солнечном свете.

Избыточная доза УФ-синего света приводит к ускорению деградационных процессов, которые увеличивают риски раннего ухудшения зрения по сравнению с солнечным светом при прочих равных условиях.
Повышенная доза синего в спектре светодиодного освещения влияет на здоровье человека и функционирование зрительного анализатора, что увеличивает риски инвалидизации по зрению и здоровью в трудоспособном возрасте.

Концепция создания полупроводниковых источников освещения с биологически адекватным светом

В противовес консерватизму экспертов Минпромторга РФ и Инновационного центра «Сколково» культивируемая авторами статьи концепция создания полупроводниковых источников белого света с биологически адекватным светом набирает сторонником по всему миру. Например, в Японии компанией Toshiba Material Co., LTD созданы светодиоды по технологии TRI-R (рис. 7).

 

Рис.7. Технология TRI-R.

 

Рис.7. Технология TRI-R.

Такая комбинация фиолетовых кристаллов и люминофоров позволяет синтезировать светодиоды со спектрами, близкими к спектру солнечного света с различной цветовой температурой, и устранить вышеуказанные недостатки в спектре светодиода (синий кристалл, покрытый желтым люминофором).

На рис. 8. представлено сравнение спектра солнечного света (TK = 6500 К) со спектрами светодиодов по технологии TRI-R и технологии (синий кристалл, покрытый желтым люминофором).

 

Рис. 8. Общая картина сравнения спектров света (Источник: http://trir-pj.com/technology/).

 

Рис. 8. Общая картина сравнения спектров света (Источник: ]]>http://trir-pj.com/technology/]]>).

Из анализа представленных данных видно, что в спектре белого света светодиодов по технологии TRI-R устранен провал на 480 нм и отсутствует избыточная доза синего.

Итак, проведение исследований по выявлению механизмов воздействия света определенного спектра на здоровье человека является государственной задачей. Игнорирование этих механизмов приводит к много миллиардным издержкам.

Выводы

В Санитарные Правила записывают нормы из светотехнических нормативных документов, путем перевода европейских стандартов. Эти стандарты формируются специалистами, не всегда являющимися независимыми и проводящими свою национальную техническую политику (национального бизнеса), которая часто не совпадает с национальной технической политикой России.

При светодиодном освещении происходит неадекватное управление диаметром зрачка глаза, что ставит под сомнение корректность фотобиологических оценок по ГОСТ Р МЭК 62471-2013.

Государство не финансирует опережающие исследования по влиянию технологий на здоровье человека, из-за чего врачи-гигиенисты вынуждены адаптировать нормы и требования под технологии, которые продвигается бизнесом по технологиям трансфера.

Технические решения по разработке светодиодов светильников и экранов ПК должны учитывать обеспечение безопасности глаз и здоровья человека, принять меры по исключению эффекта «меланопсинового креста», который имеет место для всех ныне существующих энергосберегающих источников света и подсветки устройств отображения информации.

При светодиодном освещении с белыми светодиодами (синий кристалл и желтый люминофор), которые имеют провал в спектре на 480 нм, идет неадекватное управление диаметром зрачка глаза.

Для родильных домов, детских учреждений и школ должны разрабатываться светильники с биологически адекватным спектром света, учетом особенностей детского зрения и проходить обязательную гигиеническую сертификацию.

Выводы кратко от редакции:

1. Светодиоды очень ярко излучают в синей и ближней УФ области и очень слабо в голубой.

2. Глаз же «измеряет» яркость, чтобы сузить зрачек по уровню не синего, а голубого цвета, который в спектре белого светодиода практически отсутствует, поэтому, глаз «думает», что темно и раскрывает зрачок пошире, что приводит к тому, что на сетчатку попадает в разы больше света (синего и УФ), чем при освещении солнцем и этот свет «выжигает» светочувствительные клетки глаза.

3. При этом избыток синего света в глазу приводит к ухудшению четкости изображения, т.к. на сетчатке формируется картинка с ореолом.

4. Глаз детей примерно на порядок более прозрачен для синего, чем у пожилых, поэтому у детей процесс «выжигания» в разы интенсивнее.

5. И не надо забывать, что светодиоды — это не только освещение, но и сейчас почти все экраны.

Если дать еще один образ, то повреждения глаз от светодиодов сродни слепоте в горах, которая возникает от отражения УФ от снега и опаснее как раз в пасмурную погоду.

Возникает вопрос, что делать тем, кто уже имеет у себя светодиодное освещение, как обычно, из светодиодов непонятного происхождения?
Приходит в голову два варианта:

1. Добавить дополнительную подсветку голубым светом (480нм).
2. Поставить на лампы желтый светофильтр.

Первый вариант нравится больше, т.к. есть в продаже синие (голубые) светодиодные ленты с 475нм излучения. Как только проверить, какая там в реальности длина волны?
Второй вариант «съест» часть света и лампа будет тусклее, и, к тому же, тоже неизвестно, какую часть синего мы уберем.

Источник: www.kramola.info


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.