Углерод в природе


углерод

  • Обозначение — C (Carbon);
  • Период — II;
  • Группа — 14 (IVa);
  • Атомная масса — 12,011;
  • Атомный номер — 6;
  • Радиус атома = 77 пм;
  • Ковалентный радиус = 77 пм;
  • Распределение электронов — 1s22s22p2;
  • t плавления = 3550°C;
  • t кипения = 4827°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,55/2,50;
  • Степень окисления: +4, +3, +2, +1, 0, -1, -2, -3, -4;
  • Плотность (н. у.) = 2,25 г/см3 (графит);
  • Молярный объем = 5,3 см3/моль.

Соединения углерода:

  • Оксиды углерода CO, CO2
  • Угольная кислота H2CO3 и ее соли

Углерод в виде древесного угля известен человеку с незапамятных времен, поэтому, о дате его открытия говорить не имеет смысла. Собственно свое название «углерод» получил в 1787 году, когда была опубликована книга «Метод химической номенклатуры», в которой вместо французского названия «чистый уголь» (charbone pur) появился термин «углерод» (carbone).


Углерод обладает уникальной способностью образовывать полимерные цепочки неограниченной длины, порождая тем самым огромный класс соединений, изучением которых занимается отдельный раздел химии — органическая химия. Органические соединения углерода лежат в основе земной жизни, поэтому, о важности углерода, как химического элемента, говорить не имеет смысла — он основа жизни на Земле.

Сейчас рассмотрим углерод с точки зрения неорганической химии.

Углерод в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером «6», относится к 14(IVa) группе (См. Атомы 14(IVa) группы).

атом углерода
Рис. Строение атома углерода.

Электронная конфигурация углерода — 1s22s22p2 (см. Электронная структура атомов). На внешнем энергетическом уровне у углерода находятся 4 электрона: 2 спаренных на s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома углерода в возбужденное состояние (требует энергетических затрат) один электрон с s-подуровня «покидает» свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома углерода приобретает следующий вид: 1s22s12p3.


переход атома углерода в возбужденное состояние
Рис. Переход атома углерода в возбужденное состояние.

Такая «рокировка» существенно расширяет валентные возможности атомов углерода, которые могут принимать степень окисления от +4 (в соединениях с активными неметаллами) до -4 (в соединениях с металлами).

В невозбужденном состоянии атом углерода в соединениях имеет валентность 2, например, CO(II), а в возбужденном — 4: CO2(IV).

«Уникальность» атома углерода заключается в том, что на его внешнем энергетическом уровне находятся 4 электрона, поэтому, для завершения уровня (к чему, собственно, стремятся атомы любого химического элемента) он может с одинаковым «успехом», как отдавать, так и присоединять электроны с образованием ковалентных связей (см. Ковалентная связь).

Углерод, как простое вещество

Как простое вещество углерод может находиться в виде нескольких аллотропных модификаций:

  • Алмаз
  • Графит
  • Фуллерен
  • Карбин

Алмаз

кристаллическая решетка алмаза
Рис. Кристаллическая решетка алмаза.

Свойства алмаза:

  • бесцветное кристаллическое вещество;
  • самое твердое вещество в природе;
  • обладает сильным преломляющим эффектом;
  • плохо проводит тепло и электричество.

тетраэдр алмаза
Рис. Тетраэдр алмаза.

Исключительная твердость алмаза объясняется строением его кристаллической решетки, которая имеет форму тетраэдра — в центре тетраэдра находится атом углерода, который связан равноценно прочными связями с четырьмя соседними атомами, образующими вершины тетраэдра (см. рисунок выше). Такая «конструкция» в свою очередь связана с соседними тетраэдрами.

Графит

кристаллическая решетка графита
Рис. Кристаллическая решетка графита.

Свойства графита:

  • мягкое кристаллическое вещество серого цвета слоистой структуры;
  • обладает металлическим блеском;
  • хорошо проводит электричество.

В графите атомы углерода образуют правильные шестиугольники, лежащие в одной плоскости, организованные в бесконечные слои.

В графите химические связи между соседними атомами углерода образованы за счет трех валентных электронов каждого атома (изображены синим цветом на рисунке ниже), при этом четвертый электрон (изображен красным цветом) каждого атома углерода, расположенный на p-орбитали, лежащей перпендикулярно плоскости слоя графита, не участвует в образовании ковалентных связей в плоскости слоя. Его «предназначение» заключается в другом — взаимодействуя со своим «собратом», лежащим в соседнем слое, он обеспечивает связь между слоями графита, а высокая подвижность p-электронов обусловливает хорошую электропроводность графита.


распределение орбиталей атома углерода в графите
Рис. Распределение орбиталей атома углерода в графите.

Фуллерен

кристаллическая решетка фуллерена
Рис. Кристаллическая решетка фуллерена.

Свойства фуллерена:

  • молекула фуллерена представляет собой совокупность атомов углерода, замкнутых в полые сферы типа футбольного мяча;
  • это мелкокристаллическое вещество желто-оранжевого цвета;
  • температура плавления = 500-600°C;
  • полупроводник;
  • входит в состав минерала шунгита.

Карбин

Свойства карбина:

  • инертное вещество черного цвета;
  • состоит из полимерных линейных молекул, в которых атомы связаны чередующимися одинарными и тройными связями;
  • полупроводник.

Химические свойства углерода

При нормальных условиях углерод является инертным веществом, но при нагревании может реагировать с разнообразными простыми и сложными веществами.

Выше уже было сказано, что на внешнем энергетическом уровне углерода находится 4 электрона (ни туда, ни сюда), поэтому углерод может, как отдавать электроны, так и принимать их, проявляя в одних соединениях восстановительные свойства, а в других — окислительные.

Углерод является восстановителем в реакциях с кислородом и другими элементами, имеющими более высокую электроотрицательность (см. таблицу электроотрицательности элементов):


  • при нагревании на воздухе горит (при избытке кислорода с образованием углекислого газа; при его недостатке — оксида углерода(II)):
    C + O2 = CO2;
    2C + O2 = 2CO.
  • реагирует при высоких температурах с парами серы, легко взаимодействует с хлором, фтором:
    C + 2S = CS2
    C + 2Cl2 = CCl4
    2F2 + C = CF4
  • при нагревании восстанавливает из оксидов многие металлы и неметаллы:
    C0 + Cu+2O = Cu0 + C+2O;
    C0+C+4O2 = 2C+2O
  • при температуре 1000°C реагирует с водой (процесс газификации), с образованием водяного газа:
    C + H2O = CO + H2;

Углерод проявляет окислительные свойства в реакциях с металлами и водородом:

  • реагирует с металлами с образованием карбидов:
    Ca + 2C = CaC2
  • взаимодействуя с водородом, углерод образует метан:
    C + 2H2 = CH4

Углерод получают термическим разложением его соединений или пиролизом метана (при высокой температуре):
CH4 = C + 2H2.

Применение углерода

Соединения углерода нашли самое широкое применение в народном хозяйстве, перечислить все их не представляется возможным, укажем только некоторые:


  • графит применяется для изготовления грифелей карандашей, электродов, плавильных тиглей, как замедлитель нейтронов в ядерных реакторах, как смазочный материал;
  • алмазы применяются в ювелирном деле, в качестве режущего инструмента, в буровом оборудовании, как абразивный материал;
  • в качестве восстановителя углерод используют для получения некоторых металлов и неметаллов (железа, кремния);
  • углерод составляет основную массу активированного угля, который нашел широчайшее применение, как в быту (например, в качестве адсорбента для очистки воздуха и растворов), так и в медицине (таблетки активированного угля) и в промышленности (в качестве носителя для каталитических добавок, катализатора полимеризации и проч.).

Источник: prosto-o-slognom.ru

Углерод

Углерод — неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.


Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец — металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np2:

  • C — 2s22p2
  • Si — 3s23p2
  • Ge — 4s24p2
  • Sn — 5s25p2
  • Pb — 6s26p2
Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций — графит, алмаз, фуллерен
  • MgCO3 — магнезит
  • CaCO3 — кальцит (мел, мрамор)
  • CaCO3*MgCO3 — доломит
Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз — нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

C2H6 → (t) C + H2 (пиролиз этана)

Химические свойства
  • Реакции с неметаллами
  • При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.


    C + H2 → (t) CH4 (метан)

    2С + O2 → (t) 2CO (угарный газ — продукт неполного окисления углерода, образуется при недостатке кислорода)

    С + O2 → (t) CO2 (углекислый газ — продукт полного окисления углерода, образуется при достаточном количестве кислорода)

    С + F2 → (t) CF4

  • Реакции с металлами
  • При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

    Ca + C → CaC2 (карбид кальция, СО углерода = -1)

    Al + C → Al4C3 (карбид алюминий, СО углерода -4)

    Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

  • Восстановительные свойства
  • Углерод — хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

    Fe2O3 + C → Fe + CO2

    ZnO + C → Zn + CO

    FeO + C → Fe + CO

    Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

    SiO2 + C → (t) Si + CO

    Может восстановить и собственный оксид:

    CO2 + C → CO

  • Реакция с водой

  • Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца — крайне важна в промышленности:

    C + H2O → CO↑ + H2

  • Реакции с кислотами
  • В реакциях с кислотами углерод проявляет себя как восстановитель:

    C + HNO 3(конц.) → (t) CO2 + NO2 + H2

    C + HNO3 → CO2 + NO + H2O

    C + H2SO4(конц.) → CO2 + SO2 + H2O

Оксид углерода II — СO

Оксид углерода II — продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

Получение


В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

CO2 + C → (t) CO

C + H2O → (t) CO + H2

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

HCOOH → (H2SO4) CO + H2O

Химические свойства

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

CO + O2 → CO2

Fe2O3 + CO → Fe + CO2

FeO + CO → Fe + CO2

Образование карбонилов — чрезвычайно токсичных веществ.

Fe + CO → (t) Fe(CO)5

Оксид углерода IV — CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

Получение

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

CaCO3 → (t) CaO + CO2

C6H12O6 → C2H5OH + CO2

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

CaCO3 + HCl → CaCl2 + H2O + CO2

Углекислый газ образуется при горении органических веществ:

C3H8 + O2 → CO2 + H2O

Химические свойства

  • Реакция с водой
  • В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

    CO2 + H2O ⇄ H2CO3

  • Реакции с основными оксидами и основаниями
  • В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние — карбонаты (при избытке основания), кислые — гидрокарбонаты (при избытке кислотного оксида).

    2KOH + CO2 → K2CO3 + H2O (соотношение основание — кислотный оксид 2:1)

    KOH + CO2 → KHCO3 (соотношение основание — кислотный оксид 1:1)

    Na2O + CO2 → Na2CO3

  • Окислительные свойства
  • При нагревании способен окислять металлы до их оксидов.

    Zn + CO2 → (t) ZnO + CO

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Химические свойства

  • Качественная реакция
  • Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается «закипанием» — появлением пузырьков бесцветного газа без запаха.

    MgCO3 + HCl → MgCl2 + CO2↑ + H2O

    Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа — помутнение исчезало.

    Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

    Ca(OH)2 + CO2 → CaCO3 (осадок выпадает)

    CaCO3 + H2O + CO2 → Ca(HCO3)2 (осадок растворяется)

  • Средние и кислые соли
  • Чтобы сделать из средней соли (карбоната) — кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 — ошибка. Ее следует записать в виде воды и углекислого газа.

    Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

    Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

    LiHCO3 + LiOH → Li2CO3 + H2O

  • Нагревание солей угольной кислоты
  • При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты — на соответствующий оксид металла, углекислый газ и воду.

    MgCO3 → (t) MgO + CO2

    KHCO3 → (t) K2CO3 + CO2↑ + H2O

Источник: studarium.ru

Графит

Чаще всего в природе чистый углерод можно встретить в форме графита — мягкого черного материала, легко расслаивающегося и словно скользкого на ощупь. Многие могут вспомнить, что из графита делаются грифели карандашей — но это не всегда верно. Часто грифель делают из композита графитовой крошки и клея, но встречаются и полностью графитовые карандаши. Интересно, но на карандаши уходит больше одной двадцатой всей мировой добычи естественного графита.

Чем необычен графит? В первую очередь, он хорошо проводит электрический ток — хотя сам углерод и не похож на другие металлы. Если взять пластинку графита, то окажется, что вдоль ее плоскости проводимость примерно в сто раз больше, чем в поперечном направлении. Это напрямую связано с тем, как организованы атомы углерода в материале.

Если посмотреть на структуру графита, то мы увидим, что она состоит из отдельных слоев толщиной в один атом. Каждый из слоев — сетка из шестиугольников, напоминающая собой соты. Атомы углерода внутри слоя связаны ковалентными химическими связями. Более того, часть электронов, обеспечивающих химическую связь, «размазана» по всей плоскости. Легкость их перемещения и определяет высокую проводимость графита вдоль плоскости углеродных чешуек.

Отдельные слои соединяются между собой благодаря ван-дер-ваальсовым силам — они гораздо слабее, чем обычная химическая связь, но достаточны для того, чтобы кристалл графита не расслаивался самопроизвольно. Такое несоответствие приводит к тому, что электронам гораздо сложнее перемещаться перпендикулярно плоскостям — электрическое сопротивление возрастает в 100 раз.

Благодаря своей электропроводности, а также возможности встраивать атомы других элементов между слоями, графит применяется в качестве анодов литий-ионных аккумуляторов и других источников тока. Электроды из графита необходимы для производства металлического алюминия — и даже в троллейбусах используются графитовые скользящие контакты токосъемников.

Кроме того, графит — диамагнетик, причем обладающий одной из самых высоких восприимчивостей на единицу массы. Это означает, что если поместить кусочек графита в магнитное поле, то он всячески будет пытаться вытолкнуть это поле из себя — вплоть до того, что графит может левитировать над достаточно сильным магнитом.

И последнее важное свойство графита — невероятная тугоплавкость. Самым тугоплавким веществом на сегодняшний день считается один из карбидов гафния с температурой плавления около 4000 градусов Цельсия. Однако если попытаться расплавить графит, то при давлениях около ста атмосфер он сохранит твердость вплоть до 4800 градусов Цельсия (при атмосферном давлении графит сублимирует — испаряется, минуя жидкую фазу). Благодаря этому материалы на основе графита используют, например, в корпусах ракетных сопел.

Алмаз

Многие материалы под давлением начинают менять свою атомарную структуру — происходит фазовый переход. Графит в этом смысле ничем не отличается от других материалов. При давлениях в сто тысяч атмосфер и температуре в 1–2 тысячи градусов Цельсия слои углерода начинают сближаться между собой, между ними возникают химические связи, а когда-то гладкие плоскости становятся гофрированными. Образуется алмаз, одна из самых красивых форм углерода.

Свойства алмаза радикально отличаются от свойств графита — это твердый прозрачный материал. Его чрезвычайно сложно поцарапать (обладатель 10-ки по шкале твердости Мооса, это максимум твердости). При этом электропроводность алмаза и графита отличается в квинтиллион раз (это число с 18 нулями).

Этим определяется применение алмазов: большая часть добываемых и получаемых искусственно алмазов используется в металлообработке и других отраслях промышленности. Например, широко распространены точильные диски и режущие инструменты с алмазным порошком или напылением. Алмазные напыления используются даже в хирургии — для скальпелей. Об использовании этих камней в ювелирной промышленности хорошо известно всем.

Потрясающая твердость находит применение и в научных исследованиях — именно с помощью высококачественных алмазов в лабораториях изучают материалы при давлениях в миллионы атмосфер. Подробнее об этом можно прочитать в нашем материале «Путешествие к центру Земли».

Графен

Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его — на скотче останется тонкий слой графита. Повторим эту операцию еще раз — приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше. Повторив процедуру еще несколько раз, мы получим графен — материал, за который вышеупомянутые британские физики получили Нобелевскую премию в 2010 году.

Графен представляет собой плоский монослой из атомов углерода, полностью идентичный атомарным слоям графита. Его популярность связана с необычным поведением электронов в нем. Они двигаются так, словно бы вовсе не обладают массой. В действительности, конечно, масса электронов остается все той же, что и в любом веществе. Во всем «виноваты» атомы углерода графенового каркаса, притягивающие заряженные частицы и образующие особенное периодическое поле.

Следствием такого поведения стала большая подвижность электронов — они перемещаются в графене гораздо быстрее, чем в кремнии. По этой причине многие ученые надеются, что основой электроники будущего станет именно графен.

Интересно, что у графена есть углеродные собратья — пентаграфен и фаграфен. Первый из них состоит из немного искаженных пятиугольных секций и, в отличие от графена, плохо проводит электрический ток. Фаграфен состоит из пяти-, шести- и семиугольных секций. Если свойства графена одинаковы во всех направлениях, то фаграфен будет обладать выраженной анизотропией свойств. Оба этих материала были предсказаны теоретически, но в реальности пока не существуют.

Углеродные нанотрубки

Представьте себе, что вы свернули небольшой кусочек графенового листа в трубку и склеили ее края. Получилась полая конструкция, состоящая из тех же самых шестиугольников атомов углерода, что и графен и графит, — углеродная нанотрубка. Этот материал во многом родственен графену — он обладает высокой механической прочностью (когда-то из углеродных нанотрубок предлагали строить лифт в космос), высокой подвижностью электронов.

Однако есть одна необычная особенность. Графеновый лист можно скручивать параллельно воображаемому краю (стороне одного из шестиугольников), а можно и под углом. Оказывается, от того, как мы скрутим углеродную нанотрубку, будут очень сильно зависеть ее электронные свойства, а именно: будет она больше похожа на полупроводник с запрещенной зоной или на металл.

Когда углеродные нанотрубки наблюдались впервые, достоверно неизвестно. В 1950–1980-х года разные группы исследователей, занимавшихся катализом реакций с участием углеводородов (например, пиролиза метана), обращали внимание на продолговатые структуры в саже, покрывавшей катализатор. Сейчас, чтобы синтезировать углеродные нанотрубки только конкретного вида (конкретной хиральности), химики предлагают использовать специальные затравки. Это небольшие молекулы в виде колец, состоящих, в свою очередь, из шестиугольных бензольных колец. Про работы по их синтезу можно почитать, например, здесь.

Как и графен, углеродные нанотрубки могут найти большое применение в микроэлектронике. Уже сейчас созданы первые транзисторы на нанотрубках, превосходящие по своим свойствам традиционные кремниевые приборы. Кроме того, нанотрубки легли в основу транзистора с самым маленьким затвором в мире.


Карбин

Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена — по меньшей мере в два раза меньше.

Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации — при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен— диэлектрик.

Главная сложность в изучении карбинов — их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день получены цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе — его удастся уменьшить до одного атома.

Фуллерены

Хотя шестиугольник — одна из самых стабильных конфигураций, которые могут образовывать атомы углерода, есть целый класс компактных объектов, где встречается правильный пятиугольник из углерода. Эти объекты называются фуллеренами.

В 1985 году Гарольд Крото, Роберт Кёрл и Ричард Смолли исследовали пары углерода и то, в какие фрагменты слипаются атомы углерода при охлаждении. Оказалось, что в газовой фазе есть два класса объектов. Первый — кластеры, состоящие из 2–25 атомов: цепочки, кольца и другие простые структуры. Второй — кластеры, состоящие из 40–150 атомов, не наблюдавшиеся ранее. За следующие пять лет химикам удалось доказать, что этот второй класс представляет собой полые каркасы из атомов углерода, наиболее устойчивый из которых состоит из 60 атомов и повторяет по форме футбольный мяч. C60, или бакминстерфуллерен, состоял из двадцати шестиугольных секций и 12 пятиугольных, скрепленных между собой в сферу.

Открытие фуллеренов вызвало большой интерес химиков. Впоследствии был синтезирован необычный класс эндофуллеренов  — фуллеренов, в полости которых находился какой-либо посторонний атом или небольшая молекула. К примеру, всего лишь год назад в фуллерен впервые поместили молекулу плавиковой кислоты, что позволило очень точно определить ее электронные свойства. 

В 1991 году оказалось, что фуллериды — кристаллы фуллеренов, в которых часть полостей между соседними многогранниками занимают металлы, — это молекулярные сверхпроводники с рекордно высокой температурой перехода для этого класса, а именно 18 кельвин (для K3C60). Позднее нашлись фуллериды и с еще большей температурой перехода — 33 кельвина,  Cs2RbC60. Такие свойства оказались напрямую связаны с электронной структурой вещества.

Q-углерод

Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был синтезирован американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp2-гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

В отличие от алмаза, графита и других форм углерода, Q-углерод оказался ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия — только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

***

Перечисленное — не все известные формы углерода. Более того, прямо сейчас теоретики и экспериментаторы создают и изучают новые углеродные материалы. В частности, такие работы ведутся в Уральском федеральном университете. Мы обратились к Анатолию Федоровичу Зацепину, доценту и главному научному сотруднику Физико-технологического института УрФУ, чтобы выяснить, как можно предсказывать свойства еще не синтезированных материалов и создавать новые формы углерода.

N + 1: Свойства углеродных наноматериалов очень сильно зависят от структуры и варьируются в широких пределах. Можно ли как-то заранее предсказать свойства материала по его структуре?

Анатолий Зацепин: Предсказать можно, и мы этим занимаемся. Существуют методы компьютерного моделирования, с помощью которых осуществляются расчеты из первых принципов (ab initio) — мы закладываем определенную структуру, моделируем и берем все фундаментальные характеристики атомов, из которых состоит эта структура. В результате получаются те свойства, которыми может обладать материал или новое вещество, которое мы моделируем. В частности, что касается углерода, мы сумели смоделировать новые модификации, не известные природе. Их можно создать искусственно.

В частности, наша лаборатория на физтехе УрФУ сейчас занимается разработкой, синтезом и исследованиями свойств новой разновидности углерода. Ее можно назвать так: двумерно-упорядоченный линейно-цепочный углерод. Такое длинное название связано с тем, что этот материал представляет из себя так называемую 2D-структуру. Это пленки, составленные из отдельных цепей углерода, причем в пределах каждой цепи атомы углерода находятся в одной и той же «химической форме» — sp1-гибридизация. Это придает совершенно необычные свойства материалу, в цепочках sp1-углерода прочность превышает прочность алмаза и других углеродных модификаций.

Когда мы формируем из этих цепочек пленки, получается новый материал, обладающий свойствами, присущими цепочкам углерода, плюс к тому совокупность этих упорядоченных цепочек формирует двумерную структуру или сверхрешетку на специальной подложке. Такой материал обладает большими перспективами не только благодаря механическим свойствам. Самое главное, что углеродные цепочки в определенной конфигурации можно замкнуть в кольцо, при этом возникают очень интересные свойства, такие как сверхпроводимость, а магнитные свойства таких материалов могут быть лучше, чем у существующих ферромагнетиков.

Задача остается в том, чтобы их реально создать. Наше моделирование показывает путь, куда двигаться.

Как сильно отличаются реальные и предсказанные свойства материалов?

Погрешность всегда существует, но дело в том, что расчеты и моделирование из первых принципов используют фундаментальные характеристики отдельных атомов — квантовые свойства. И когда на таком микро- и наноуровне из этих квантовых атомов формируются структуры, то ошибки связаны с существующим ограничением теории и тех моделей, которые существуют. Например, известно, что уравнение Шредингера точно можно решить только для атома водорода, а для более тяжелых атомов надо использовать определенные приближения, если мы говорим о твердых телах или более сложных системах.

С другой стороны — ошибки могут возникать за счет компьютерных вычислений. При всем этом грубые ошибки исключены, а точности вполне достаточно, чтоб предсказать то или иное свойство или эффект, которые будут присущ данному материалу.

Много ли материалов можно предсказать такими способами?

Если говорить об углеродных материалах, то тут много вариаций, и я уверен, что многое еще не исследовано и не открыто. В УрФУ есть все для исследования новых углеродных материалов, и впереди предстоит большая работа.

Мы занимаемся и другими объектами, к примеру, кремниевыми материалами для микроэлектроники. Кремний и углерод — это, кстати, аналоги, они находятся в одной группе в таблице Менделеева.

Владимир Королёв

Источник: nplus1.ru

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

  • углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO2;
  • растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);
  • растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо — например, в уголь.

В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов:

  • углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);
  • углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк (см. Цикл преобразования горной породы) или из отложений вновь перейдет в морскую воду.

Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Составной частью этих поисков является установление количества CO2, находящегося в тканях растений (например, в только что посаженном лесу) — ученые называют это стоком углерода. Поскольку правительства разных стран пытаются достичь международного соглашения по ограничению выбросов CO2, вопрос сбалансированного соотношения стоков и выбросов углерода в отдельных государствах стал главным яблоком раздора для промышленных стран. Однако ученые сомневаются, что накопление углекислого газа в атмосфере можно остановить одними лесопосадками.

Источник: elementy.ru

История

Углерод в виде древесного угля применялся в древности для выплавки металлов. Издавна известны аллотропные модификации углерода — алмаз и графит.

На рубеже XVII—XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества — невесомого флюида — флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь — это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд. Поздние флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокалённым мелом, в результате чего образовывались фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Ещё в 1751 год германский император Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины и пришёл к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода — графит — в алхимическом периоде считался видоизменённым свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счёл его сернистым телом особого рода, особым минеральным углём, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путём осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Происхождение названия

В XVII—XIX веках в русской химической и специализированной литературе иногда применялся термин «углетвор» (Шлаттер, 1763; Шерер, 1807; Севергин, 1815); с 1824 года Соловьёв ввёл название «углерод». Соединения углерода имеют в названии часть карбо(н) — от лат. carbō (род. п. carbōnis) «уголь».

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов — 12C (98,93 %) и 13C (1,07 %) и одного радиоактивного изотопа 14C (β-излучатель, Т½= 5730 лет), сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.

На образовании и распаде 14C основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропные модификации углерода

Кристаллический углерод

  • Алмаз
  • Графен
  • Графит
  • Карбин
  • Лонсдейлит
  • Наноалмаз
  • Фуллерены
  • Фуллерит
  • Углеродное волокно
  • Углеродные нановолокна
  • Углеродные нанотрубки

Аморфный углерод

  • Активированный уголь
  • Древесный уголь
  • Ископаемый уголь: антрацит и Ископаемый уголь.
  • Кокс каменноугольный, нефтяной и др.
  • Стеклоуглерод
  • Техуглерод
  • Сажа
  • Углеродная нанопена

На практике, как правило, перечисленные выше аморфные формы являются химическими соединениями с высоким содержанием углерода, а не чистой аллотропной формой углерода.

Кластерные формы

  • Астралены
  • Диуглерод
  • Углеродные наноконусы

Структура

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода:

  • тетраэдрическая, образуется при смешении одного s- и трёх p-электронов (sp3-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.
  • тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp2-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
  • дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Графит и алмаз

Основные и хорошо изученные аллотропные модификации углерода — алмаз и графит. Термодинамический расчёт линии равновесия графит — алмаз на фазовой р, Т-диаграмме был выполнен в 1939 году О. И. Лейпунским. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается взрывообразно. ΔН0 перехода — 1,898 кДж/моль. Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа. При нормальном давлении углерод сублимируется при 3780 K.

Жидкий углерод

Жидкий углерод существует только при определённом внешнем давлении. Тройные точки: графит — жидкость — пар Т = 4130 K, р = 10,7 МПа и графит — алмаз — жидкость Т ≈ 4000 K, р ≈ 11 ГПа. Линия равновесия графит — жидкость на фазовой р, Т-диаграмме обладает положительным наклоном, переходящим по мере приближения к тройной точке графит — алмаз — жидкость в отрицательный, что связано с уникальными свойствами атомов углерода создавать углеродные молекулы, состоящие из различного количества атомов (от двух до семи). Наклон линии равновесия алмаз — жидкость, в отсутствие прямых экспериментов в области очень высоких температур (> 4000—5000 K) и давлений (> 10—20 ГПа), долгие годы считался отрицательным. Проведённые японскими исследователями прямые эксперименты и обработка полученных экспериментальных данных с учётом аномальности высокотемпературной теплоёмкости алмаза показали, что наклон линии равновесия алмаз — жидкость положителен, т. е. алмаз тяжелее своей жидкости (в расплаве он будет тонуть, а не всплывать как лёд в воде).

В мае 2019 года в журнале Physical Review Letters опубликована работа российских учёных из Объединенного института высоких температур РАН А. М. Кондратьева и А. Д. Рахеля, в которой физики первыми, впервые в мире детально изучили и измерили свойства жидкой формы углерода. Результаты физического эксперимента позволили получить новые данные, которые были недоступны исследователям в условиях компьютерного моделирования. Тонкая пластина высокоориентированного пиролитического графита с гексагональной осью, перпендикулярной его поверхности, была зажата между двумя пластинами особого материала и нагрета при давлении от 0,3 до 2,0 ГигаПаскалей. Оказалось, что температура плавления графита при этих условиях составляет 6300–6700 Кельвинов, что более чем на 1000° выше значений, предсказанных теоретически и на математических моделях. Исследователи впервые в мире точно измерили физические показатели процесса плавления углерода и свойства его жидкой фазы (удельное сопротивление, энтальпию плавления, изохорную теплоёмкость и многие другие показатели этого загадочного вещества. Они также обнаружили, что скорость звука в жидком углероде возрастает при уменьшении плотности.

Углерод III

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20 % выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок. 1200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решёткой типа вюрцита — лонсдейлит (а = 0,252 нм, с = 0,412 нм, пространственная группа Р63/mmc), плотность 3,51 г/см³, то есть такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Ультрадисперсные алмазы (наноалмазы)

В 1980-е годы в СССР было обнаружено, что в условиях динамической нагрузки углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы». Размер частиц в таких материалах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ со значительным отрицательным кислородным балансом, например, смесей тротила с гексогеном. Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф, уголь и пр.). Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (−C≡C−), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или CCl4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9—2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин — линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно или тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 1960-х годов в Институте элементоорганических соединений Академии наук СССР. Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение — в фотоэлементах.

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц C60, C70, C80, C90, C100 и подобных (фуллерены), а также графенов, нанотрубок и сложных структур — астраленов.

Аморфный углерод (строение)

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Графен

Графен — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.

Углеродное кольцо

В 2019 г. впервые синтезирован один экземпляр молекулы, представляющей собой кольцо из 18 атомов углерода. В нем чередуются одинарные и тройные химические связи.

Нахождение в природе

Было оценено, что Земля в целом состоит из 730 ppm углерода, с содержанием 2000 ppm в ядре и 120 ppm в мантии и коре. Так как масса Земли 5,972⋅1024 kg, то это предполагает наличие 4360 миллионов гигатонн углерода.

Свободный углерод находится в природе в виде алмаза и графита. Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых — антрацит (94—97 % С), бурые угли (64—80 % С), каменные угли (76—95 % С), горючие сланцы (56—78 % С), нефть (82—87 % С), горючих природных газов (до 99 % метана), торф (53—56 % С), а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода CO2, в воздухе 0,046 % CO2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных (~17,5 %).

В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода в организме человека достигает около 21 % (15 кг на 70 кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).

Кругооборот углерода в природе включает биологический цикл, выделение CO2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоёв океанических вод, а также при дыхании, брожении, гниении. Биологический цикл состоит в том, что углерод в виде CO2 поглощается из тропосферы растениями в процессе фотосинтеза. Затем из биосферы он вновь возвращается в геосферу, частично через организмы животных и человека, и в виде CO2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

В природе встречается минерал шунгит, в котором содержится как твёрдый углерод (≈25 %), так и значительные количества оксида кремния (≈35 %).

Источник: chem.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.