Проблемы использования тэс гэс аэс


Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.


Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Содержание работы

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.


Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако  лишь сегодня человечество избавляется от идеологических представлений  о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных  ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.


При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется  в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика.


trong>Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн.  кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.


r /> За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика. Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
– Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика. Это отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.


Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце — природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.


Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.


6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.


Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия»для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды. Источник: журнал «Япония сегодня».

2. Социальное партнёрство (Музейная педагогика)

Использование обучающимися образовательных учебных центров и музеев города для проведения интерактивных занятий и последующих отчётов школьников о проведённых экскурсий.

3. Молодежная программа «Энергия молодости» под руководством Ж.И. Алфёрова. Нобелевский лауреат 2000 г. На XX Всемирном энергетическом конгрессе WEC-2007 в Риме, главная тема которого звучала так: "Будущее энергетики в современном взаимозависимом мире" (в нем приняли участие более 5000 делегатов почти из 150 стран), был  организован Молодежный форум.
Для ребят подготовили напряженную и интересную программу, со организатором которой стала Международная энергетическая премия "Глобальная энергия". От России в работе форума приняли участие победители ежегодного общероссийского молодежного конкурса исследовательских проектов фонда "Глобальная энергия" в области энергетики "Энергия молодости".


Так что в перспективе до середины века можно ориентироваться на существенный вклад в мировую энергетику лишь тех новых источников, для которых уже сегодня решены принципиальные проблемы массового использования и создана техническая база для промышленного освоения. Единственным здесь конкурентом традиционному органическому топливу может быть только ядерная энергетика, обеспечивающая уже сейчас около 20% мирового производства электроэнергии с развитой сырьевой и производственной базой для дальнейшего развития отрасли.

Заключение

Природная окружающая среда – неисчерпаемый источник экологически чистой, возобновляемой энергии – и эта энергия уже добывается. Для разработки новых энергетических ресурсов привлекают науку и технику. В недалеком будущем мы узнаем о прогрессе в этой области, от разработки новых устройств, производства энергии до тех новшеств, что изменяют наш образ жизни.
Эффективное использование энергетического потенциала является основой дальнейшего экологического развития нашей страны и может реально содействовать интегрированию России в мировое сообщество и защите её национальных интересов. Поэтому энергетическая безопасность является одной из важнейших составляющих системы национальной безопасности страны. Человечество вступает в эпоху рисков, XXI век будет, по-видимому, судьбоносным этапом в истории развития цивилизации,

Источник: urok.1sept.ru

Главное преимущество — практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1-1,5 года (для сравнения, одна только Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.Проблемы использования тэс гэс аэс
Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще[7]. Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС[8][9]. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД.
Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше.

Источник: www.sites.google.com

Недостатки альтернативных источников энергии

Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

Гелиоэнергетика имеет существенные минусы — солнце светит только днем, соответственно ночью никакой энергии от него не добьешься. Это неудобно, т.к. основной пик потребления электричества приходится на вечерние часы. В разное время года и в разных местах Земли солнце светит по-разному. Подстраиваться под него дело затратное и сложное.

Ветер и волны тоже явления своенравные, хотят – дуют и приливают, а хотят — нет. Но если они и работают, то делают это медленно и слабо. Поэтому ветроэнергетика и приливная энергетика пока не получили большого распространения.

Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

Проблемы использования тэс гэс аэс

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии — это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

ВАЖНО ЗНАТЬ:

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид
    – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота
    – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен
    – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

Проблемы использования тэс гэс аэс

Минусы

  • Электроэнергия, производимая восточными регионами настолько велика, что не используется полностью. Зато в центральных областях образуется ее нехватка, в связи с густо расположенными населенными пунктами.
  • Недостаточное количество электропутей в районах Сибири и в дальневосточных регионах. Эта проблема должна решаться путем строительства новых трасс, а также развитием вторых путей в местностях, где трассы уже существуют.
  • Сети могут осуществлять перевозку лишь электричества. Кроме электроэнергии в мире существует еще множество ресурсов, подлежащих перевозке. Поэтому проблема их транспортировки, в данном случае, не решается.
  • Мало инвестиций в отрасль. Дело в том, происходит недостаток выделения денежных средств в эту область. Вопрос может решаться путем привлечения денежных вложений иностранного капитала, увеличения вложения граждан страны.
  • Отсутствие транспортных связей со странами, имеющими непосредственную близость к России. Возможно, стоит больше внимания уделять этому вопросу, ведь на данный момент его проработанность оставляет желать лучшего.
  • Шумовое загрязнение мобильными сетями. Телефонные источники тоже входят в эту отрасль. Но они, как бы нам не хотелось в это верить, наносят колоссальный вред природе. Из-за наличия большого количества сетей, пронизывающих все пространство страны, происходит массовое вымирание пчел. Эти насекомые опыляют большую часть растений. Мы рискуем попасть в глобальную катастрофу, сопровождающуюся мировым голодом и вымиранием, если не начнем решать эту проблему сейчас.
  • Вредные излучения, получаемые людьми во время общения по мобильной связи. Это в основном СВЧ — волны, они пронизывают тело человека полностью, во время разговора по телефону. Отрицательный эффект воздействия имеет накопительное свойство, чем больше человек отдается в распоряжение гаджетам, тем сильнее он будет страдать от головных болей и различных заболеваний.

Проблемы использования тэс гэс аэс

Трудно переоценить всю пользу, которую принес нам электронный транспорт. Мы далеко шагнули вперед, изобретя этот вид перемещения электричества, информации. Но негативные последствия такого шага не заставят себя долго ждать. В скором будущем человечеству придется решать проблему отрицательного воздействия на окружающий мир в целом. Возможно, стоит задуматься об этом уже сейчас, чтобы не поплатиться большими потерями в недалеком будущем.

Мирный атом должен жить

1. ТЭС. Тепловые Энерго(электро) Станции. Базируются на переработке(сжигании) твердых топливных носителей, таких, как например уголь.

1. Большой объем выработки электроэнергии.

2. Наиболее просты в эксплуатации.

3. Сам принцип работы и постройка их очень просты.

4. Дешевы, легкодоступны.

5. Дают рабочие места.

1. Дают меньше электроэнергии, чем ГЭС и АЭС

2. Экологически опасны — загрязнение окружающей среды, парниковый эффект, требуют потребления невозобновляемых ресурсов(как уголь).

3. В силу своего примитивизма являются просто морально устаревшими.

ГЭС — Гидро Электро Станция. Базируются на использовании водных ресурсов, реки, приливно-отливные циклы.

1. Относительно экологически безопасны.

2. Дают в разы больше электроэнергии, чем ТЭС.

3. Могут давать дополнительные подпроизведственные структуры.

4. Рабочие места.

5. Более просты в эксплуатации, чем АЭС. .

1. Опять же, экологическая безопасность относительна(взрыв плотины, загрязнение воды при отсутствии очистительного цикла, нарушение баланса).

2. Большие затраты на строительство.

3. Дают меньше энергии, чем АЭС.

АЭС — Атомные Электростанции. Самые совершенные на данный момент ЭС по уровню мощности. Используют урановые стержни изотопа урана -278 и энергию атомной реакции.

1. Относительно малое потребление ресурсов. Самый главный — уран.

2. Мощнейшие по выработке электроэнергии ЭС. Одна ЭС может обеспечивать целые города и мегаполисы, ближлежащие районы, вообщем, охватывают огромные территории.

3. Более современны, чем ТЭС.

4. Дают большое количство рабочих место.

5. Открывают пути к созданию более совершенных ЭС.

1. Постоянное загрязнение окружающей среды. Смог, радиация.

2. Потребление редких ресурсов — уран.

3. Использование воды,загрязнение ее.

4. Вероятная угроза экологической суперкатастрофы. При потере контроля за ядерными реакциями, нарушениями цикла охлаждения(ярчайший пример обоих ошибок — Чернобыль; АЭС до сих пор закрыта саркофагом, самая страшная экологическая катастрофа в истории человечества) ,внешнем в воздействии(землетрясение, прмер — Фукусима), военной атаке или подрыве террористами — весьма вероятна(или — почти стопроцентна) экологическая катастрофа, а также весьма вероятна угроза взрыва АЭС, — это взрыв, ударная волна, и самое главное, радиоактивное заражение обширной территории, отзвуки такой катастрофы могут поразить весь мир. Потому АЭС является наравне с ОМП(Оружием Массового Поражения) одним из самых опасных достижений человечества, хотя АЭС — это Мирный атом. Впервые АЭС была создана в СССР.

Энергетику необходимо развивать отнюдь не только в направлении использования возонбновляемых ресурсов, а еще также развивать более совершенные типы ЭС, которые будут принципиально новыми по своей основе и типу работы. Гипотетически, в скором времени начнется освоения космоса, также проникновение в другие тайны микромира и вообще, физики могут дать поразительные результаты. Доведение до максимального совершенства АЭС — также перспективный путь развития энергетики.

На данном этапе конечно же, наиболее вероятным и реализуемым является вариант развития ветрогонных комплексов, солнечных батарей и ДОВЕДЕНИЕ до максимального совершенства ГЭС и АЭС.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Проблемы использования тэс гэс аэс

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии — это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Проблемы использования тэс гэс аэс

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов — это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Проблемы использования тэс гэс аэс

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Плюсы

  • Возможность строительства электростанций далеко от потребителей. Протяженность страны очень велика, если бы мы начали строить повсеместно электростанции, то их бы потребовалось очень большое количество. За счет проводов этот вид энергии можно доставить в любую точку бескрайней России, при этом без особых усилий и затрат.
  • Переброска электроэнергии происходит мгновенно. По сравнению с транспортировкой топлива, угля, нефти на нее не уходит никаких затрат. Соответственно и стоимость за киловатт сравнительно невелика.
  • Надежность. В нашей стране система славится своей надежностью, даже на уровне других государств. Так, за несколько десятков лет не произошло ни одной крупной аварии, которая могла бы привести к межрегиональным отключениям.
  • Большая протяженность. Дело в том, что сеть охватывает многие уголки России, тем самым снабжая электроэнергией все жилые дома и производственные здания.
  • Передача информации за короткий промежуток времени в любой уголок мира. Это является несомненным плюсом. Сегодня, мы не можем представить себя без телефонной и радиосвязи. Нам уже давно не нужно писать продуманное письмо, и пытаться уложить в его строках все произошедшее за месяц. Достаточно просто позвонить, и вот мы слышим голос родных и близких людей, совершаем деловые разговоры, осуществляем передачу видео, изображений, звука.
  • Интернет, телевидение. Благодаря этому мы не чувствуем себя одинокими. Вещания дотягиваются до приемников даже в лесной глуши. Для нас стало настолько обыденным делом легко получать информацию, что мы даже разучились ею пользоваться.

Проблемы использования тэс гэс аэс

АЭС преимущества и недостатки

Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.

По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

Атомная энергетика сегодня

По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

Проблемы использования тэс гэс аэс

Недостатки АЭС перед ТЭС

  1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов.
    Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
    2. Недостатки АЭС – это и небольшой КПД относительно ТЭС.
    Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
    3. Особняком стоит общая проблема тепло и атомных электростанций.
    Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

Графики электрических нагрузок

Графики нагрузок, характеризующие работу как потребителей, так и источников электроэнергии, представляют собой диаграммы в прямоугольных осях координат, где по оси абсцисс откладывается время, в течение которого показывается изменение нагрузки, а по оси ординат – соответствующие данному моменту времени нагрузки, обычно в виде активной, реактивной или полной (кажущейся) мощностей. Чаще всего строят суточные, месячные, сезонные и годовые графики нагрузок. При построении так называемых ступенчатых графиков нагрузок (рис. 4) считают, что нагрузка в интервале между двумя измерениями остается постоянной. Исходными для построения годового графика нагрузки по продолжительности являются суточные графики нагрузки для характерных зимних и летних суток. График строится по 12 точкам, соответствующим наибольшим суточным нагрузкам каждого месяца.

Площадь годового графика нагрузки по продолжительности представляет собой в определенном масштабе потребляемую (отдаваемую) за год энергию (кВт·ч), а площадь суточных графиков – энергию, потребляемую (отдаваемую) за сутки (кВт·ч).

Годовые графики нагрузки дают возможность определить оптимальное количество и мощность агрегатов электростанции или трансформаторов подстанции, уточнить режимы их работы, выявить возможные сроки их планово-предупредительных ремонтов. Графики также дают возможность приближенно рассчитать годовую потребность в электроэнергии, годовые потери в сетях, трансформаторах и других элементах установки. По графикам нагрузки определяется ряд техникоэкономических показателей для действующих или вновь проектируемых электроустановок, таких, как средняя (среднесуточная, среднемесячная или среднегодовая) нагрузка электростанции или подстанции, число часов использования установленной мощности, коэффициент заполнения графика, коэффициент использования установленной мощности.

Преимущества и недостатки тепловых электростанций

Рис. 4. Суточный ступенчатый график активной нагрузки

Графики нагрузки предназначены для следующих целей:

  • для определения времени пуска и остановки агрегатов, включения и отключения трансформаторов;
  • определения количества выработанной (потребленной) электроэнергии, расхода топлива и воды;
  • ведения экономичного режима электроустановки;
  • планирования сроков ремонтов оборудования;
  • проектирования новых и расширения действующих электроустановок;
  • проектирования новых и развития существующих энергосистем, их узлов нагрузки и отдельных потребителей электроэнергии.

Чем равномернее нагрузка генераторов, тем лучше условия их работы, поэтому возникает так называемая проблема регулирования графиков нагрузки, проблема их выравнивания. При этом следует иметь в виду, что целесообразно по возможности более полно использовать установленную мощность электростанций.

Для регулирования графиков нагрузки используют различные способы, в том числе:

  • подключение сезонных потребителей;
  • подключение нагрузки ночью;
  • увеличение числа рабочих смен;
  • смещение начала работы смен и начала работы предприятий;
  • разнос выходных дней;
  • введение платы как за активную, так и за реактивную энергию;
  • уменьшение перетоков реактивной мощности по сети;
  • объединение районных энергосистем.

Суточный график нужен для оперативного регулирования и планирования балансов электроэнергии и мощности до нескольких суток.

Недельный:

  • определение готовности работы оборудования.
  • управление режимами с учетом недельной неравномерности;
  • проведение текущих осмотров ревизий текущих ремонтов;
  • регулирование водно-энергетических режимов ГЭС.

Годовой:

  • планирование хозяйств деятельности;
  • планирование капитального ремонта;
  • планирование обеспечения топливом;
  • водно-энергетическое регулирование ресурсов водохранилища ГЭС;
  • планирование товарно-ценовой деятельности.

Просмотров:
1 541

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Источник: mr-build.ru

Будущее ГЭС

Большие гидроэлектростанции выполняют следующие функции в энергосистеме:

  1. производство электроэнергии;
  2. быстрое согласование мощности генерации с потребляемой мощностью, стабилизация частоты в энергосистеме;
  3. накопление и хранение энергии в форме потенциальной энергии воды в поле тяготения Земли с преобразованием в электроэнергию в любое время.

Выработка электроэнергии и маневр мощностью возможны на ГЭС любого масштаба. А накопление энергии срок от нескольких месяцев до нескольких лет (на зиму и на маловодные годы) требует создания больших водохранилищ.

Для сравнения: автомобильный аккумулятор массой 12 кг напряжением 12 В и емкостью 85 амперчасов может хранить 1,02 киловатт-часа (3,67 МДж). Чтобы запасти такое количество энергии и преобразовать ее в электрическую в гидроагрегате с КПД 0,92, нужно поднять 4 тонны (4 куб.м) воды на высоту 100 м. или 40 тонн воды на высоту 10 м.

Чтобы ГЭС мощностью всего 1 МВт работала на запасенной воде 5 месяцев в году по 6 часов в день на запасенной воде, нужно на высоте 100 м накопить и затем пропустить через турбину 3,6 миллиона тонн воды. При площади водохранилища 1 кв.км понижение уровня составит 3,6 м. Такой же объем выработки на дизельной электростанции с КПД 40% потребует 324 т солярки. Таким образом, в холодном климате запасение энергии воды на зиму требует высоких плотин и больших водохранилищ.

Кроме того, на большей части территории России в зоне вечной мерзлоты малые и средние реки зимой промерзают до дна. В этих краях малые ГЭС зимой бесполезны.

Большие ГЭС неизбежно находятся на значительном расстоянии от многих потребителей, и следует учитывать затраты на строительство линий электропередачи и потери энергии а нагрев проводов. Так, для Транссибирской (Шилкинской) ГЭС стоимость строительства ЛЭП-220 до Транссиба протяженностью всего 195 км (очень мало для такой стройки) превышает 10% всех затрат. Затраты на строительство сетей электропередачи столь существенны, что в Китае мощность ветряков, до сих пор не подключенных к сети, превышает мощность всей энергетики России к востоку от Байкала.

Таким образом, перспективы гидроэнергетики зависят от прогресса технологий и производства, и хранения и передачи энергии в совокупности.

Энергетика – очень капиталоемкая и потому консервативная отрасль. До сих пор работают некоторые электростанции, особенно ГЭС, построенные в начале двадцатого века. Поэтому для оценки перспективы на полвека вместо объемных показателей того или иного вида энергетики важнее смотреть на скорость прогресса в каждой технологии. Подходящие показатели технического прогресса в генерации – КПД (или процент потерь), единичная мощность агрегатов, стоимость 1 киловатта мощности генерации, стоимость передачи 1 киловатта на 1 км, стоимость хранения 1 киловатт-часа в сутки.

Аккумулирование энергии

Хранение электроэнергии – новая отрасль в энергетике. Долгое время люди хранили топливо (дрова, уголь, потом нефть и нефтепродукты в цистернах, газ в емкостях под давление и подземных хранилищах). Потом появились накопители механической энергии (поднятой воды, сжатого воздуха, супермаховики и др.), среди них лидером остаются гидроаккумулирующие электростанции.

Вне зон вечной мерзлоты тепло, накопленное солнечными водонагревателями, уже можно закачивать под землю для отопления домов зимой. После распада СССР прекратились опыты по использованию энергии солнечного тепла для химических превращений.

Известные химические аккумуляторы имеют ограниченное количество циклов заряд-разряд. Суперконденсаторы имеют намного большую долговечность, но их емкость пока недостаточна. Очень быстро совершенствуются накопители энергии магнитного поля в сверхпроводящих катушках.

Прорыв в распространении накопителей электроэнергии произойдет, когда цена снизится до 1 долл. за киловатт-час. Это позволит широко использовать виды электрогенерации, не способные работать непрерывно (солнечная, ветровая, приливная энергетика).

Альтернативная энергетика

Из технологий генерации быстрее всего сейчас происходят перемены в солнечной энергетике. Солнечные батареи позволяют производить энергию в любом потребном количестве – от зарядки телефона до снабжения мегаполисов. Энергии Солнца на Земле в сотню раз больше, чем остальных видов энергии вместе взятых.

Ветроэлектростанции прошли период снижения цен и находятся на этапе роста размеров башен и мощности генераторов. В 2012 году мощность всех ветряков мира превзошла мощность всех электростанций СССР. Однако в 20-е годы 21 века возможности улучшения ветряков будут исчерпаны и двигателем роста останется солнечная энергетика.

Технология больших ГЭС миновала свой «звездный час», с каждым десятилетием больших ГЭС строят все меньше. Внимание изобретателей и инженеров переключается на приливные и волновые электростанции. Однако приливы и большие волны есть не везде, поэтому их роль будет невелика. В 21 веке еще будут строить малые ГЭС, особенно в Азии.

Получение электроэнергии за счет тепла, идущего из недр Земли (геотермальная энергетика) перспективно, но лишь в отдельных районах. Технологии сжигания органического топлива еще несколько десятилетий будут составлять конкуренцию солнечной и ветровой энергетике, особенно там, где мало ветра и солнца.

Быстрее всего совершенствуются технологии получения горючего газа путем брожения отходов, пиролиза или разложения в плазме). Тем не менее, твердые бытовые отходы всегда перед газификацией будут требовать сортировки (а лучше раздельного сбора).

Технологии ТЭС

КПД парогазовых электростанций превысил 60%. Переоборудование всех газовых ТЭЦ в парогазовые (точнее, газопаровые) позволит увеличить выработку электроэнергии более чем на 50% без увеличения сжигания газа.

Угольные и мазутные ТЭЦ намного хуже газовых и по КПД, и по цене оборудования, и по количеству вредных выбросов. Кроме того, добыча угля требует больше всего человеческих жизней на мегаватт-час электроэнергии. Газификация угля на несколько десятилетий продлит существование угольной отрасли, но вряд ли профессия шахтера доживет до 22 века. Очень вероятно, что паровые и газовые турбины будут вытеснены быстро совершенствующимися топливными элементами в которых химическая энергия преобразуется в электрическую минуя стадии получения тепловой и механической энергии. Пока же топливные элементы очень дороги.

Атомная энергетика

Коэффициент полезного действия АЭС последние 30 лет рос медленнее всего. Совершенствование ядерных реакторов, каждый из которых стоит несколько миллиардов долларов, происходит очень медленно, а требования безопасности приводят к росту стоимости строительства. «Ядерный ренессанс» не состоялся. С 2006 г. в мире ввод мощностей АЭС меньше не только ввода ветровых, но и солнечных. Тем не менее, вероятно что некоторые АЭС доживут до 22 века, хотя из-за проблемы радиоактивных отходов их конец неизбежен. Возможно, в 21 веке будут работать и термоядерные реакторы, но их малое число, безусловно, «погоды не сделает».

До сих пор остается неясной возможность реализации «холодного термояда». В принципе, возможность термоядерной реакции без сверхвысоких температур и без образования радиоактивных отходов не противоречит законам физики. Но перспективы получения таким способом дешевой энергии очень сомнительны.

Новые технологии

И немного фантастики в чертежах. Сейчас в России проходят проверку три новых принципа изотермического преобразования теплоты в электричество. У этих опытов очень много скептиков: ведь нарушается второе начало термодинамики. Пока получена одна десятая микроватта. В случае успеха, сначала появятся батарейки для часов и приборов. Потом лампочки без проводов. Каждая лампочка станет источником прохлады. Кондиционеры будут вырабатывать электроэнергию вместо того чтобы потреблять ее. Провода в доме станут не нужны. Когда фантастика станет явью – судить рано.

А пока провода нам нужны. Больше половины цены киловатт-часа в России приходится на стоимость строительства и содержания линий электропередач и подстанций. Более 10% вырабатываемой электроэнергии уходит на нагрев проводов. Снизить затраты и потери позволяют «умные сети», автоматически управляющие множеством потребителей и производителей энергии. Во многих случаях для снижения потерь лучше передавать постоянный ток, чем переменный. Вообще избежать нагрева проводов можно, сделав их сверхпроводящими. Однако сверхпроводники, работающие при комнатной температуре, не найдены и неизвестно, будут ли найдены.

Для малонаселенных территорий с высокими затратами на транспортировку также важна распространенность и общедоступность источников энергии.

Наиболее распространена энергия Солнца, но Солнце видно не всегда (особенно за Полярным кругом). Зато зимой и ночью часто дует ветер, но не всегда и не везде. Тем не менее, ветросолнечные электростанции уже сейчас позволяют в разы снизить расход солярки в отдаленных поселках.

Некоторые геологи уверяют, что нефть и газ образуются почти повсеместно и в наши дни из углекислого газа, попадающего с водой под землю. Правда, использование гидроразрыва пластов («фрекинга») разрушает естественные места, где нефть и газ могут скапливаться. Если это верно, то небольшое количество нефти и газа (в десятки раз меньше, чем сейчас) можно добывать почти везде без ущерба для геохимического кругооборота углерода, вот только экспортировать углеводороды – значит, лишать себя будущего.

Разнообразие природных ресурсов в мире означает, что устойчивое получение электроэнергии требует сочетания разных технологий применительно к местным условиям. В любом случае, неограниченное количество энергии на Земле получить нельзя и по экологическим, и по ресурсным причинам. Поэтому рост производства электроэнергии, стали, никеля и других материальных вещей на Земле в ближайшем столетии неизбежно сменится ростом производства интеллектуального и духовного.

Игорь Эдуардович Шкрадюк

Источник: http://ecodelo.org/rossiyskaya_federaciya/38628-perspektivnye_tehnologii_elektroenergetiki_i_budushchee_ges-statia

Источник: altenergiya.ru

Современные способы получения электроэнергии

Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.

Генерация – это процесс преобразования различных видов энергии в электрическую. Процесс генерации происходит в электрических станциях. Сегодня существует множество видов генерации.

how-to-save-electricity

Получить электроэнергию сегодня можно следующими способами:

  1. Тепловая электроэнергетика – электроэнергия получается с помощью теплового сгорания органического топлива. Если просто – нефть и газ сгорают, выделяют тепло, тепло нагревает пар. Пар под давлением заставляет вращаться электрогенератор, а электрогенератор вырабатывает электроэнергию. Тепловые электрические станции, в которых происходит этот процесс, именуются ТЭСами.
  2. Ядерная энергетика – принцип работы АЭС (атомных станций, получающих электроэнергию с помощью ядерных установок) очень похож на работу ТЭС. Отличие лишь в том, что тепло получают не от сгорания органического топлива, а от деления атомных ядер в ядерном реакторе.
  3. Гидроэнергетика – в случае с ГЭС (гидроэлектростанциями), электрическую энергию получают от кинетической энергии течения воды. Вы когда-нибудь видели водопады? В основе такого способа получения энергии лежит сила водных водопадов, которые вращают роторы электрогенераторов, производящих электроэнергию. Конечно, водопады не природные. Они создаются искусственно, используя природное речное течение. Кстати, не так давно ученые выяснили, что морское течение намного мощнее речного, в планах строить морские гидроэлектростанции.
  4. Ветроэнергетика – в данном случае приводит в действие электрогенератор кинетическая энергия ветра. Помните мельницы? В них полностью отражен этот принцип работы.
  5. Гелиоэнергетика – в гелиоэнергетике платформой для преобразования служит тепло солнечных лучей.
  6. Водородная энергетика – электроэнергию получают путем сгорания водорода. Водород сжигают, он выделяет тепло, а дальше все происходит по уже известной нам схеме.
  7. Приливная энергетика – что используют для добычи электроэнергии в этом случае? Энергию морских приливов!
  8. Геотермальная энергетика — получение сначала тепла, а потом и электроэнергии из естественного тепла Земли. К примеру, в вулканических районах.

gidro

Недостатки альтернативных источников энергии

Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

Гелиоэнергетика имеет существенные минусы — солнце светит только днем, соответственно ночью никакой энергии от него не добьешься. Это неудобно, т.к. основной пик потребления электричества приходится на вечерние часы. В разное время года и в разных местах Земли солнце светит по-разному. Подстраиваться под него дело затратное и сложное.

Ветер и волны тоже явления своенравные, хотят – дуют и приливают, а хотят — нет. Но если они и работают, то делают это медленно и слабо. Поэтому ветроэнергетика и приливная энергетика пока не получили большого распространения.

Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

jadernaja

Атомная энергетика сегодня

По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

tes2

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

tes

Недостатки АЭС перед ТЭС

  1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
    2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
    3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

Преимущества и недостатки АЭС перед ГЭС

Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

  1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
    2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

Недостатки АЭС перед водными станциями незначительны — ресурсы, которые использует АЭС для ядерной реакции, а конкретно урановое топливо, является не возобновляемым. В то время как количество воды – основного возобновляемого ресурса ГЭС, от работы гидроэлектростанции никак не изменится, а уран сам по себе восстановиться в природе не может.

vzriv_aes

АЭС: преимущества и недостатки

Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.

По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

Аварии на АЭС

Ранее мы не упомянули только основные недостатки АЭС, которые всем известны – это последствия возможных аварий. Аварии на АЭС классифицируются по шкале INES, которая имеет 7 уровней. Опасность облучения для населения представляют аварии 4го уровня и выше.

Только две аварии в истории оценены по максимальному 7му уровню – Чернобыльская катастрофа и авария на АЭС Фукусима 1. Одну аварию посчитали 6м уровнем, это Кыштымская авария, которая произошла в 1957 году на химкомбинате «Маяк» в Челябинской области.

Безусловно, имеющиеся у АЭС преимущества и недостатки меркнут по сравнению с возможностью ядерных катастроф, уносящих жизни множества людей. Но достоинства АЭС сегодня – это усовершенствованная система безопасности, которая практически полностью исключает возможность аварий, т.к. алгоритм работы атомных реакторов компьютеризирован и с помощью компьютеров реакторы отключаются в случае минимальных нарушений.

Имеющиеся у АЭС преимущества и недостатки учитывают при разработке новых моделей атомных станций, которые будут работать на переработанном ядерном топливе и уране, залежи которого ранее в работу не вводились.

Это значит, что основные преимущества АЭС сегодня – это перспективность их модернизации, улучшения и новых изобретений в этой области. Думается, что самые главные достоинства АЭС откроются чуть позже, надеемся, что наука не будет стоять на месте, и совсем скоро мы о них узнаем.

Туры в Чернобыль и Припять

Источник: ChernobylGuide.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.