Глобальные последствия загрязнения атмосферы


Кислотные дожди. Одним из последствий загрязнения атмосферы является выпадение кислотных дождей. Кислотные дожди образуются в результате выброса в атмосферу оксидов серы и азота промышленными предприятиями и автотранспортом. При анализе состава кислотного дождя основное внимание обращается на содержание катионов водорода, определяющих его кислотность (рН). Для чистой воды водородный показатель рН = 7, что соответствует нейтральной реакции. Растворы с рН ниже 5,6 считаются кислыми, выше 7 — щелочными. Весь диапазон кислотности — щелочности охватывается значениями рН от 0 до 14.

Примерно две трети кислотных дождей вызываются диоксидом серы. Оставшаяся треть обусловлена в основном оксидами азота, которые также служат одной из причин парникового эффекта и входят в состав городского смога.

Попадая в атмосферу, эти загрязнители могут разноситься ветром на тысячи километров от источника и возвращаться на землю с дождем, снегом или туманом. Они превращают озера, реки и пруды в «мертвые» водоемы, уничтожая в них практически все живое — от рыб до микроорганизмов и растительности, губят леса, разрушают сооружения и памятники архитектуры. Многие животные и растения не могут выжить в условиях повышенной кислотности. Кислотные дожди не только вызывают подкисление поверхностных вод и верхних горизонтов почв, но и распространяются с нисходящими потоками воды на весь почвенный профиль и вызывают значительное подкисление грунтовых вод.


Воздействие кислотных дождей сказывается далеко за пределами страны, создающей это загрязнение.

Загрязнение атмосферы биологическими примесями.Биологические примеси подразделяют на патогенные микроорганизмы (бактерии, вирусы, грибы и т.д.) и микроорганизмы (растения и животные). К первым относят живые существа, размером меньше 500 мкм.

Загрязнение атмосферы биологическими примесями связано как с массовым появлением самих микроорганизмов, так и с влиянием их на человека, в первую очередь на его иммунную систему.

Даже микродозы чужеродных химических веществ, проникнув в организм человека с загрязненным воздухом, недоброкачественной пищей или водой, разносятся кровью по органам и тканям. Частично они задерживаются там и начинают участвовать в обмене веществ, искажая его нормальное течение и становясь пусковыми механизмами ускоренной мутации клеток, среди которых зачастую появляются онкогенноопасные.

Парниковый эффект. Для последних 20 лет характерны климатические аномалии. Так, в этот период среднегодовые глобально усредненные температуры воздуха у поверхности Земли были наивысшими за последние 130 лет. Во многих местах отмечены сильные региональные аномалии в виде засух или, наоборот, необычайно обильных осадков, наводнений и т.д. Среднегодовая температура за последнее столетие выросла примерно на полградуса.


Большинство ученых считает, что указанные аномалии вызваны изменением химического состава атмосферного воздуха с ростом концентрации углекислого газа, окиси углерода, метана, окислов азота, летучих углеводородов и др.

Суть естественного парникового эффекта заключается в том, что парниковые газы хорошо пропускают солнечное излучение, доходящее до поверхности Земли и нагревающее ее, и заметно поглощают отраженное тепловое (длинноволновое) излучение нагретой поверхности и нижних слоев атмосферы. Часть этого поглощенного теплового излучения возвращается атмосферой к поверхности Земли. Не будь этого эффекта, средняя температура земной поверхности была бы на 3,2…5,0°С ниже нынешних 14,5°С. Однако в настоящее время в связи с все более увеличивающимся содержанием парниковых газов в атмосфере появилась проблема глобального потепления климата, именуемая парниковым эффектом.

Согласно расчетам, к 2025 г. вероятное повышение средней глобальной температуры составит 2,5°С, а к 2050 г. — 3…4°С. Увеличение средней глобальной температуры даже на 1 °С приведет к значительному изменению атмосферной циркуляции и условий увлажнения почвы. Последствием потепления будет подъем уровня Мирового океана на 0,5…1,5 м, что приведет к затоплению громадных прибрежных территорий, увеличению частоты и силы тайфунов, ураганов, торнадо и других глобальных возмущений атмосферы.


Для территории России такое потепление скажется на смещении зон, оптимальных для земледелия, на север и увеличении стока рек, текущих с севера на юг. Наряду с этим на севере и востоке России начнет оттаивать вечная мерзлота, что усложнит сохранение возведенных здесь строительных сооружений.

Разрушение озонового слоя. Озоновый слой, поглощая коротковолновое ультрафиолетовое излучение Солнца, сохраняет все живое на Земле и предопределяет тепловой режим, а также динамику атмосферы.

На протяжении многих лет в озоновом слое наблюдаются локальные уменьшения содержания озона — озоновые дыры. Под озоновой дырой понимают пространство в озоносфере, характеризующиеся значительным понижением концентрации озона (до 50%) под воздействием естественных и антропогенных факторов. Время от времени эти громадные по площади дыры возникают над разными территориями и висят над ними от нескольких дней до недели, частота их появления увеличивается.

Наибольшие понижения концентрации озона в озоносфере зафиксированы над Антарктикой. Как установлено, в цепочке процессов, обусловливающих формирование озоновой дыры, можно выделить три важных звена: высокие концентрации хлорных соединений, низкие температуры в стратосфере и наличие аэрозольных облаков.


Причиной разрушения озонового слоя является попадание в него хлора и оксидов азота, которые содержатся в основном в промышленных выбросах и выбросах автомобилей. В этих процессах наиболее значимо первое вещество.

Вследствие разрушения озонового слоя повышается вероятность заболевания человека раком кожи. Для предотвращения разрушения озонового слоя необходим отказ от хлорсодержащих веществ. Другим направлением является создание систем генерации озона в атмосфере, что связано с серьезными затратами.

Источник: studopedia.net

В атмосферу попадают различные элементы и вещества, которые меняют состав и концентрацию воздуха. Способствуют загрязнению воздуха такие источники:

  • выбросы и деятельность промышленных объектов;
  • выхлопы автомобилей;
  • радиоактивные объекты;
  • сельское хозяйство;
  • бытовые и промышленные отходы.

Во время сжигания топлива, отходов и других веществ, в воздух попадают продукты горения, которые значительно ухудшают состояние атмосферы. Также загрязняет воздух пыль, которая образуется на стройке. На тепловых станциях сгорает топливо, и выделяется значительная концентрация элементов, загрязняющих атмосферу. Чем больше изобретений совершает человечество, тем больше появляется источников загрязнения воздуха и биосферы в целом.

Атмосферное загрязнение


Во время сгорания различных видов топлива в воздух попадает углекислый газ. Наряду с другими парниковыми газами, он порождает такое опасное явление нашей планеты, как парниковый эффект. Это приводит к разрушению озонового слоя, который в свою очередь защищает нашу планету от интенсивного воздействия ультрафиолетовых лучей. Все это приводит к глобальному потеплению и климатическим изменениям планеты.

Одним из последствий накопления углекислого газа и глобального потепления является таяние ледников. В результате поднимается уровень вод Мирового океана, и в дальнейшем может произойти затопление островов и прибережных зон материков. В некоторых районах постоянным явлением будут наводнения. Погибнут растения, животные и люди.

Загрязняя воздух, различные элементы выпадают на землю в виде кислотных дождей. Эти осадки попадают в водоемы, изменяют состав воды, и это становится причиной гибели флоры и фауны в реках и озерах.

На сегодняшний день загрязнение воздуха – это локальная проблема многих городов, которая переросла в глобальную. Сложно найти место в мире, где остался чистый воздух. Кроме негативного влияния на окружающую среду, атмосферное загрязнение приводит к заболеваниям у людей, которые перерастают в хронические, и сокращают продолжительность жизни населения.


Источник: ECOportal.info

 

Экологические последствия загрязнения атмосферы

Загрязнение атмосферного воздуха воздействует на здоровье человека и на окружающую природную среду различными способами — от прямой и немедленной угрозы (смог и др.) до медленного и постепенного разрушения различных систем жизнеобеспечения организма. Во многих случаях загрязнение воздушной среды нарушает структурные компоненты экосистемы до такой степени, что регуляторные процессы не в состоянии вернуть их в первоначальное состояние и в результате механизм гомеостаза не срабатывает.

Сначала рассмотрим, как влияет на окружающую природную среду локальное (местное) загрязнение атмосферы, а затем глобальное.

Физиологическое воздействие на человеческий организм главных загрязнителей (поллютантов) чревато самыми серьёзными последствиями. Так, диоксид серы, соединяясь с влагой, образует серную кислоту, которая разрушает легочную ткань человека и животных. Особенно четко эта связь прослеживается при анализе детской легочной патологии и степени концентрации диоксида серы в атмосфере крупных городов. Согласно исследованиям, американских ученых, при уровне загрязнения SO2 до 0,049 мг/м3 показатель заболеваемости (в человеко-днях) населения Нэшвилла (США) составлял 8,1 %, при 0,150—0,349 мг/м3 — 12 и в районах с загрязнением воздуха выше 0,350 мг/м3 — 43,8%. Особенно опасен диоксид серы, когда он осаждается на пылинках и в этом виде проникает глубоко в дыхательные пути.


Пыль, содержащая диоксид кремния (SiO2 ), вызывает тяжелое заболевание легких — силикоз. Оксиды азота раздражают, а в тяжелых случаях и разъедают слизистые оболочки, например, глаз, легких, участвуют в образовании ядовитых туманов и т. д. Особенно опасны они, если содержатся в загрязненном воздухе совместно с диоксидом серы и другими токсичными соединениями. В этих случаях даже при малых концентрациях загрязняющих веществ возникает эффект синергизма, т. е. усиление токсичности всей газообразной смеси.

Широко известно действие на человеческий организм оксида углерода (угарного газа). При остром отравлении появляется общая слабость, головокружение, тошнота, сонливость, потеря сознания, возможен летальный исход (даже спустя три—семь дней). Однако из-за низкой концентрации СО в атмосферном воздухе он, как правило, не вызывает массовых отравлений, хотя и очень опасен для лиц, страдающих анемией и сердечно-сосудистыми заболеваниями.

Среди взвешенных твердых частиц наиболее опасны частицы размером менее 5 мкм, которые способны проникать в лимфатические узлы, задерживаться в альвеолах легких, засорять слизистые оболочки.


Весьма неблагоприятные последствия, которые могут сказываться на огромном интервале времени, связаны и с такими незначительными по объему выбросами, как свинец, фосфор, кадмий, мышьяк, кобальт и др. Они угнетают кроветворную систему, вызывают онкологический заболевания, снижают сопротивление организма инфекциям и т. д. Пыль, содержащая соединения свинца и ртути, обладает мутагенными свойствами и вызывает генетические изменения в клетках организма.

Последствия воздействия на организм человека вредных веществ, содержащихся в выхлопных газах автомобилей, весьма серьезны и имеют широчайший диапазон действия: от кашля до летального исхода (табл. 1). Тяжелые последствия в организме живых существ вызывает и ядовитая смесь дыма, тумана и пыли — смог. Различают два типа смога: зимний смог (лондонский тип) и летний (лос-анджелесский тип).

Таблица 1. Влияние выхлопных газов автомобилей на здоровье человека (по X. Ф. Френчу, 1992)


Вредные вещества Последствия воздействия на организм человека
Оксид углерода Препятствует абсорбированию кровью кислорода, что ослабляет мыслительные способности, замедляет рефлексы, вызывает сонливость и может быть причиной потери сознания и смерти
Свинец Влияет на кровеносную, нервную и мочеполовую системы; вызывает, вероятно, снижение умственных способностей у детей, откладывается в костях и других тканях, поэтому опасен в течение длительного времени
Оксиды азота Могут увеличивать восприимчивость организма к вирусным заболеваниям (типа гриппа), раздражают легкие, вызывают бронхит и пневмонию
Озон Раздражает слизистую оболочку органов дыхания, вызывает кашель, нарушает работу легких; снижает сопротивляемость к простудным заболеваниям; может обострять хронические заболевания сердца, а также вызывать астму, бронхит
Токсичные выбросы (тяжелые металлы) Вызывают рак, нарушение функций половой системы и дефекты у новорожденных

Лондонский тип смога возникает зимой в крупных промышленных городах при неблагоприятных погодных условиях (отсутствие ветра и температурная инверсия). Температурная инверсия проявляется в повышении температуры воздуха с высотой в некотором слое атмосферы (обычно в интервале 300— 400 м от поверхности земли) вместо обычного понижения. В результате циркуляция атмосферного воздуха резко нарушается, дым и загрязняющие вещества не могут подняться вверх и не рассеиваются. Нередко возникают туманы. Концентрации оксидов серы, взвешенной пыли, оксида углерода достигают опасных для здоровья человека уровней, приводят к расстройству кровообращения, дыхания, а нередко и к смерти. В 1952 г. в Лондоне от смога с 3 по 9 декабря погибло более 4 тыс. человек, до 10 тыс. человек тяжело заболели. В конце 1962 г. в Руре (ФРГ) смог убил за три дня 156 человек. Рассеять смог может только ветер, а сгладить самую опасную ситуацию — сокращение выбросов загрязняющих веществ.


Лос-анджелесский тип смога, или фотохимический смог, не менее опасен, чем лондонский. Возникает он летом при интенсивном воздействии солнечной радиации на воздух, насыщенный, а вернее перенасыщенный выхлопными газами автомобилей. В Лос-Анджелесе, выхлопные газы более четырех миллионов автомобилей выбрасывают только оксидов азота в количестве более чем тысяча тонн в сутки. При очень слабом движении воздуха или безветрии в воздухе в этот период идут сложные реакции с образованием новых высокотоксичных загрязнителей — фотооксидантов (озон, органические перекиси, нитриты и др.), которые раздражают слизистые оболочки желудочно-кишечного тракта, легких и органов зрения. Только в одном городе (Токио) смог вызвал отравление 10 тыс. человек в 1970 г. и 28 тыс. — в 1971 г. По официальным данным, в Афинах в дни смога смертность в шесть раз выше, чем в дни относительно чистой атмосферы. В некоторых наших городах (Кемерово, Ангарск, Новокузнецк, Медногорск и др.), особенно в тех, которые расположены в низинах, в связи с ростом числа автомобилей и увеличением выброса выхлопных газов, содержащих оксид азота, вероятность образования фотохимического смога увеличивается.

Антропогенные выбросы загрязняющих веществ в больших концентрациях и в течение длительного времени наносят большой вред не только человеку, но отрицательно влияют на животных, состояние растений и экосистем в целом.

В экологической литературе описаны случаи массового отравления диких животных, птиц, насекомых при выбросах вредных загрязняющих веществ большой концентрации (особенно залповых). Так, например, установлено, что при оседании на медоносных растениях некоторых токсичных видов пыли наблюдается заметное повышение смертности пчел. Что касается крупных животных, то находящаяся в атмосфере ядовитая пыль поражает их в основном через органы дыхания, а также поступая в организм вместе со-съеденными запыленными растениями.

В растения токсичные вещества поступают различными способами. Установлено, что выбросы вредных веществ действуют как непосредственно на зеленые части растений, попадая через устьица в ткани, разрушая хлорофилл и структуру клеток, так и через почву на корневую систему. Так, например, загрязнение почвы" пылью токсичных металлов, особенно в соединении с серной кислотой, губительно действует на корневую систему, а через нее и на все растение.

Загрязняющие газообразные вещества по-разному влияют на состояние растительности. Одни лишь слабо повреждают листья, хвоинки, побеги (окись углерода, этилен и др.), другие действуют на растения губительно (диоксид серы, хлор, пары ртути, аммиак, цианистый водород и др.).

Экологические последствия глобального загрязнения атмосферы

К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

1) возможное потепление климата («парниковый эффект»);

2) нарушение озонового слоя;

3) выпадение кислотных дождей.

Большинство ученых в мире рассматривают их как крупнейшие экологические проблемы современности.

Возможное потепление климата («парниковый эффект»)

В настоящее время наблюдаемое климата, которое выражается в постепенном повышении среднегодовой температуры, начиная со второй половины прошлого века, большинство ученых связывают с накоплениями в атмосфере так называемых «парниковых газов» — диоксида углерода (СО) метана (СН4 ), хлорфторуглеродов (фреонов), озона (О3 ), оксидов азота и др.

Парниковые газы, и в первую очередь СО2, препятствуют длинноволновому тепловому излучению с поверхности Земли. По Г. Хефлингу (1990), атмосфера, насыщенная парниковыми газами, действует как крыша теплицы. Она, с одной стороны, пропускает внутрь большую часть солнечного излучения, с другой — почти не пропускает наружу тепло, пере излучаемое Землей.

В связи с сжиганием человеком все большего количества ископаемого топлива: нефти, газа, угля и др. (ежегодно более 9 млрд т условного топлива) — концентрация СО2 в атмосфере постоянно увеличивается. За счет выбросов в атмосферу при промышленном производстве в быту растет содержание фреонов (хлорфторуглеродов). На 1—1,5% в год увеличивается содержание метана (выбросы из подземных горных выработок, сжигание биомассы, выделения крупным рогатым скотом и др.). В меньшей степени растет содержание в атмосфере и оксида азота (на 0,3% ежегодно).

Следствием увеличения концентраций этих газов, создающих «парниковый эффект» является рост средней глобальной • температуры воздуха у земной поверхности. За последние 100 лет наиболее теплыми были 1980,1981, 1983, 1987 и 1988 гг. В 1988 г. среднегодовая температура оказалась на 0,4 °С выше, чем в 1950—1980 гг. Расчеты некоторых ученых показывают, что в 2005 г. она будет на 1,3 °С больше, чем в 1950—1980 гг. В докладе, подготовленном под эгидой ООН международной группой по проблемам климатических изменений, утверждается, что к 2100 г. температура на Земле увеличится на 2—4 градуса. Масштабы потепления за этот относительно короткий срок будут сопоставимы с потеплением, произошедшим на Земле после ледникового периода, а значит, экологические последствия могут быть катастрофическими. В первую очередь это связано с предполагаемым повышением уровня Мирового океана, вследствие таяния полярных льдов, сокращения площадей горного оледенения и т. д. Моделируя экологические последствия повышения уровня океана всего лишь на 0,5—2,0 м к концу XXI в., ученые установили, что это неизбежно приведет к нарушению климатического равновесия, затоплению приморских равнин в более чем 30 странах, деградации многолетнемерзлых пород, заболачиванию обширных территорий и к другим неблагоприятным последствиям.

Однако ряд ученых видят в предполагаемом глобальном потеплении климата и положительные экологические последствия (Вронский, 1993; Парниковый эффект…, 1989). Повышение концентрации СО2 в атмосфере и связанное с ним увеличение фотосинтеза, а также возрастание увлажнения климата могут, по их мнению, привести к увеличению продуктивности как естественных фитоценозов (лесов, лугов, саванн и др.), так и агроценозов (культурных растений, садов, виноградников и др.).

По вопросу о степени влияния парниковых газов на глобальное потепление климата также нет единства во мнениях. Так, в отчете Межправительственной группы экспертов по проблеме изменения климата (1992) отмечается, что наблюдающееся в последнее столетие потепление климата на 0,3—0,6 °С могло быть обусловлено преимущественно природной изменчивостью ряда климатических факторов.

В связи с этими данными академик К. Я. Кондратьев (1993) считает, что нет никаких оснований для одностороннего увлечения стереотипом «парникового» потепления и выдвижения задачи по сокращению выбросов парниковых газов как центральной в проблеме предотвращения нежелательных изменений глобального климата.

По его мнению, важнейшим фактором антропогенного воздействия на глобальный климат является деградация биосферы, а, следовательно, в первую очередь необходимо заботиться о сохранении биосферы как основного фактора глобал 1.ной экологической безопасности. Человек, используя мощность порядка 10 ТВт разрушил или сильно нарушил на 60% суши нормальное функционирование естественных сообществ организмов (Данилов-Данильян, Горшков и др., 1995). В результате из биогенного круговорота веществ изъята значительная их масса, которая ранее затрачивалась биотой на стабилизацию климатических условий. На фоне постоянного сокращения площадей с ненарушенными сообществами деградированная, резко снизившая свою ассимилирующую емкость, биосфера, становится важнейшим источником повышенного выброса в атмосферу диоксида углерода Я других парниковых газов.

На международной конференции в Торонто (Канада) в 1985 г. перед энергетикой всего мира поставлена задача сократить к 2005 г. на 20% промышленные выбросы углерод* в атмосферу. Но очевидно, что ощутимый экологический эффект может быть получен лишь при сочетании этих мер с глобальным направлением экологической политики — максимально возможным сохранением сообществ организмов, природных экосистем и всей биосферы Земля.

Нарушение озонового слоя

Озоновый слой (озоносфера) охватывает весь земной шар и располагается на высотах от 10 до 50 км с максимальной концентрацией озона на высоте 20—25 км. Насыщенность атмосферы озоном постоянно меняется % любой части планеты, достигая максимума весной в приполярной области.

Впервые истощение озонового слоя привлекло внимание широкой общественности в 1985 г., когда над Антарктидой было обнаружено пространство с пониженным (до 50%) содержанием озона, получившее название «озоновой дыры». С тех пор результаты измерений подтверждают повсеместное уменьшение озонового слоя практически на всей планете. Так, например, в России за последние десять лет концентрация озонового слоя снизилась на 4—6% в зимнее время и на 3% — в летнее.

В настоящее время истощение озонового слоя признано всеми как серьезная угроза глобальной экологической безопасности. Снижение концентрации озона ослабляет способность атмосферы защищать все живое на Земле от жесткого ультрафиолетового излучения (УФ-радиация). Живые организмы весьма уязвимы для ультрафиолетового излучения, ибо энергии даже одного фотона из этих лучей достаточно, чтобы разрушить химические связи в большинстве органических молекул. Так, например, по мнению ряда ученых-экологов, к 2030 г. в России при сохранении нынешних темпов истощения озонового слоя заболеют раком кожи дополнительно 6 млн человек. Кроме кожных заболеваний возможно развитие глазных болезней (катаракта и др.), подавление иммунной системы и т. д.

Установлено также, что растения под влиянием сильного ультрафиолетового излучения постепенно теряют свою способность к фотосинтезу, а нарушение жизнедеятельности приводит к разрыву трофических цепей биоты водных экосистем, и т. д.

Наука еще до конца не установила, каковы же основные процессы, нарушающие озоновый слой. Предполагается как естественное, так и антропогенное происхождение «озоновых дыр». Последнее, по мнению большинства ученых, более и связано с повышенным содержанием хлорфторуглеро-довфреонов). Фреоны широко применяются в промышленном производстве и в быту (хладоагрегаты, растворители, распылители, аэрозольные упаковки и др.). Поднимаясь в атмосферу, фреоны разлагаются с выделением оксида хлора, губительно действующего на молекулы озона.

По данным международной экологической организации «Гринпис», основными поставщиками хлорфторуглеродов (фре-онов) являются США— 30,85%, Япония — 12,42%, Великобритания — 8,62% и Россия — 8,0%. США пробили в озоновом слое «дыру» площадью 7 млн км2, Япония — 3 млн км2, что в семь раз больше, чем площадь самой Японии. В последнее время в США и в ряде западных стран построены заводы по производству новых видов хладореагентов (гидрохлорфторуглеро-дов) с низким потенциалом разрушения озонового слоя.

Согласно протоколу Монреальской конференции (1990 г.), пересмотренному затем в Лондоне (1991 г.) и Копенгагене (1992 г.), предусматривалось снижение выбросов хлорфторуг-лерода к 1998 г. на 50%. Согласно ст. 56 Закона Российской Федерации об охране окружающей природной среды, в соответствии с международными соглашениями, все организации и предприятия обязаны сократить и в последующем полностью прекратить производство и использование озоноразрушающих веществ. Даже если протокол будет выполнен всеми странами, необходимо продолжать решать проблему защиты людей от УФ-радиации, поскольку многие из хлорфторуглеродов могут сохраняться в атмосфере сотни лет.

Ряд ученых продолжают настаивать на естественном происхождении «озоновой дыры». Причины ее возникновения одни видят в естественной изменчивости озоносферы, циклической активности Солнца, другие связывают эти процессы с рифто-генезом и дегазацией Земли,

Кислотные дожди

Одна из важнейших экологических проблем, с которой связывают окисление природной среды, —кислотные дожди. Образуются они при промышленных выбросах в атмосферу диоксида серы и оксидов азота, которые, соединяясь с атмосферной влагой, образуют серную и азотную кислоты (рис. 13.3). В результате дождь и снег оказываются подкисленными (число рН ниже 5,6). В Баварии (ФРГ) в августе 1981 г. выпадали дожди в почву Повышение кислотности почвы угле и нефти, сгорает нарушает в ней биологическое с образованием SO2 равновесие

Вода открытых водоемов закисляется. Рыба гибнет с кислотностью рН=3,5. Максимальная зарегистрированная кислотность осадков в Западной Европе — рН=2,3.

Суммарные мировые антропогенные выбросы двух главных загрязнителей воздуха — виновников подкисления атмосферной влаги — SO2 и N0^ составляют ежегодно — более 255 млн т (1994 г.). На огромной территории природная среда закисляется, что весьма негативно отражается на состоянии всех экосистем. Выяснилось, что природные экосистемы подвергаются разрушению даже при меньшем уровне загрязнения воздуха, чем тот, который опасен для человека. «Озера и реки, лишенные рыбы, гибнущие леса — вот печальные последствия индустриализации планеты» (X. Френч, 1992).

Опасность представляют, как правило, не сами кислотные осадки, а протекающие под их влиянием процессы. Под действием кислотных осадков из почвы выщелачиваются не только жизненно необходимые растениям питательные вещества, но и токсичные тяжелые и легкие металлы — свинец, кадмий, алюминий и др. Впоследствии они сами или образующиеся токсичные соединения усваиваются растениями и другими почвенными организмами, что ведет к весьма негативным последствиям. Например, возрастание в подкисленной воде содержания алюминия всего лишь до 0,2 мг на один литр летально для рыб. Резко сокращается развитие фитопланктона, так как фосфаты, активизирующие этот процесс, соединяются с алюминием и становятся менее доступными для освоения. Алюминий снижает также прирост древесины. Токсичность тяжелых металлов (кадмия, свинца и др.) проявляется еще в большей степени.

Пятьдесят миллионов гектаров леса в 25 европейских странах страдают от действия сложной смеси загрязняющих веществ, включающей кислотные дожди, озон, токсичные металлы и др. Так, например, гибнут хвойные горные леса в Баварии. Отмечены случаи поражения хвойных и лиственных лесов в Карелии, Сибири и в других районах нашей страны.

Воздействие кислотных дождей снижает устойчивость лесов к засухам, болезням, природным загрязнениям, что приводит к еще более выраженной деградации как природных экосистем.

Ярким примером негативного воздействия кислотных осадков на природные экосистемы является закисление озер. Особенно интенсивно оно происходит в Канаде, Швеции, Норвегии и на юге Финляндии (табл. 2). Объясняется это тем, что значительная часть выбросов серы в таких промышленно развитых странах, как США, ФРГ и Великобритании, выпадают именно на их территории (табл. 2); Наиболее уязвимы в этих странах озера, таr как коренные породы, слагающие их ложе, обычно представлены гранитб-гнейсами и гранитами, не способными нейтрализовать кислотные осадки, в отличие, например, от известняков, которые создают щелочную среду и препятствуют закислению. Сильно закислены и многие озера на севере США.

Закисление озер опасно не только для популяций различных видов рыб (в том числе лососевых, сиговых и др.), но часто влечет за собой постепенную гибель планктона, многочисленных видов водорослей и других его обитателей. Озера становятся практически безжизненными.

Таблица 2 Закисление озер в мире (по данным «XX век; последние 10 лет»,

 

Страна Состояние озер
Канада Более 14 тыс. озер сильно закислены; каждому седьмому озеру на востоке страны нанесен биологический ущерб
Норвегия В водоемах общей площадью 13 тыс. км2 уничтожена рыба и еще на 20 тыс. км2 — поражена
Швеция В 14 тыс. озер уничтожены наиболее чувствительные к уровню кислотности виды; 2 200 озер практически безжизненны
Финляндия 8 % озер не обладают способностью к нейтрализации кислоты. Наиболее закисленные озера -в южной части страны ^
США В стране около 1 тью. подкисленных озер и 3 тыс. почти кислотных (данные фонда охраны окружающей среды). Исследования АООС в 1984 г. показали, что 522 озера имеют сильную кислотную среду и 964 находятся на грани этого

В нашей стране площадь значительного закисления от выпадения кислотных осадков достигает несколько десятков миллионов гектаров. Отмечены и частные случаи закисления озер (Карелия и др.). Повышенная кислотность осадков наблюдается вдоль западной границы (трансграничный перенос серы и других загрязняющих веществ) и на территории ряда крупных промышленных районов, а также фрагментарно на побережье Таймыра и Якутии.

Список литературы

Источник: megaobuchalka.ru

Загрязнение атмосферного воздуха воздействует на здоровье человека и на окружающую природную среду различными способами — от прямой и немедленной угрозы (смог и др.) до медленного и постепенного разрушения различных систем жизнеобеспечения организма. Во многих случаях загрязнение воздушной среды нарушает структурные компоненты экосистемы до такой степени, что регуляторные процессы не в состоянии вернуть их в первоначальное состояние и в результате механизм гомеостаза не срабатывает.

2.1 Изменение климата Земли

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, — это изменения солнечной радиации и орбиты Земли.

— изменение светимости солнца,

— изменения параметров орбиты Земли,

— изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,

— изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,

— изменение отражательной способности поверхности Земли (альбедо),

— изменение количества тепла, имеющегося в глубинах океана.

Принято считать, что парниковые газы являются главной причиной глобального потепления. Парниковые газы имеют также значение для понимания климатической истории Земли. Согласно исследованиям, парниковый эффект, возникающий в результате нагревания атмосферы тепловой энергией, удерживаемой парниковыми газами, является ключевым процессом, регулирующим температуру Земли.

Чтобы предотвратить резкое потепление в ближайшие годы, концентрация углекислоты должна быть снижена до уровня, существовавшего до индустриальной эпохи — до 350 частей на миллион (0,035%) (сейчас — 385 частей на миллион и увеличивается на 2 миллионные доли (0,0002%) в год, в основном из-за сжигания ископаемого топлива и вырубки лесов).

Ученым уже давно известны способы приостановления или даже прекращения массовых вырубок леса. Ещё в начале прошлого века американские исследователи прогнозировали, что выращивание конопли в промышленных масштабах способно остановить вырубку лесов, потому что урожай конопли с 10 тысяч гектаров пашни даёт столько же бумаги, сколько и лес, поваленный на площади 40 тысяч гектаров. Это связано с тем, что один гектар конопли даёт 5-6 кубометров древесины в год, а один гектар лесных угодьев — вдвое меньше.

Имеется скептическое отношение к геоинженерным методам изъятия углекислоты из атмосферы, в частности, к предложениям захоранивать углекислый газ в тектонических трещинах или закачивать его в породы на океанском дне: изъятие 50 миллионных долей газа по этой технологии будет стоить, по меньшей мере, 20 триллионов долларов, что в два раза больше национального долга США.

Существенное влияние на климат оказывает землепользование. Орошение, вырубка лесов и сельское хозяйство коренным образом меняют окружающую среду. Например, на орошаемой территории изменяется водный баланс. Землепользование может изменить альбедо отдельно взятой территории, поскольку изменяет свойства подстилающей поверхности и тем самым количество поглощаемого солнечного излучения. Например, есть причины предполагать, что климат Греции и других средиземноморских стран поменялся из-за масштабной вырубки лесов между 700 лет до н. э. и началом н. э. (древесина использовалась для строительства, кораблестроения и в качестве топлива), став более жарким и сухим, а те виды деревьев, которые использовались в кораблестроении, не растут больше на этой территории.

2.2 Нарушение озонового слоя

Озоновый слой (озоносфера)охватывает весь земной шар и располагается на высотах от 10 до 50 км с максимальной концентрацией озона на высоте 20—25 км. Насыщенность атмосферы озоном постоянно меняется в любой части планеты, достигая максимума весной в приполярной области.

Впервые истощение озонового слоя привлекло внимание широкой общественности в 1985 г., когда над Антарктидой было обнаружено пространство с пониженным (до 50%) содержанием озона, получившее название “озоновой дыры”. С тех пор результаты измерений подтверждают повсеместное уменьшение озонового слоя практически на всей планете. Так, например, в России за последние десять лет концентрация озонового слоя снизилась на 4—6% в зимнее время и на 3 % — в летнее. В настоящее время истощение озонового слоя признано всеми как серьезная угроза глобальной экологической безопасности. Снижение концентрации озона ослабляет способность атмосферы защищать все живое на Земле от жесткого ультрафиолетового излучения (УФ-радиация). Живые организмы весьма уязвимы для ультрафиолетового излучения, ибо энергии даже одного фотона из этих лучей достаточно, чтобы разрушить химические связи в большинстве органических молекул. Не случайно, поэтому в районах с пониженным содержанием озона многочисленны солнечные ожоги, наблюдается увеличение заболевания людей раком кожи и др. Так, например, по мнению ряда ученых-экологов, к 2030 г. в России при сохранении нынешних темпов истощения озонового слоя заболеют раком кожи дополнительно 6 млн. человек. Кроме кожных заболеваний возможно развитие глазных болезней (катаракта и др.), подавление иммунной системы и т. д.

Установлено также, что растения под влиянием сильного ультрафиолетового излучения постепенно теряют свою способность к фотосинтезу, а нарушение жизнедеятельности планктона приводит к разрыву трофических цепей биоты водных экосистем, и т. д.

Наука еще до конца не установила, каковы же основные процессы, нарушающие озоновый слой. Предполагается как естественное, так и антропогенное происхождение “озоновых дыр”. Последнее, по мнению большинства ученых, более вероятно и связано с повышенным содержанием хлорфторуглеродов (фреонов). Фреоны широко применяются в промышленном производстве и в быту (хладоагрегаты, растворители, распылители, аэрозольные упаковки и др.). Поднимаясь в атмосферу, фреоны разлагаются с выделением оксида хлора, губительно действующего на молекулы озона.

По данным международной экологической организации “Гринпис”, основными поставщиками хлорфторуглеродов (фреонов) являются США— 30,85%, Япония — 12,42%, Великобритания — 8,62% и Россия — 8,0%. США пробили в озоновом слое “дыру” площадью 7 млн. км2, Япония — 3 млн. км2, что в семь раз больше, чем площадь самой Японии. В последнее время в США и в ряде западных стран построены заводы по производству новых видов хладореагентов (гидрохлорфторуглеродов) с низким потенциалом разрушения озонового слоя.

Ряд ученых продолжают настаивать на естественном происхождении “озоновой дыры”. Причины ее возникновения одни видят в естественной изменчивости озоносферы, циклической активности Солнца, другие связывают эти процессы с рифто-генезом и дегазацией Земли.

2.3 Уровень радиации

Радиационное загрязнение окружающей среды может произойти при любом использовании ядерной энергии, как в мирных, так и в военных целях. Оно возникает в результате аварий на объектах, производящих или использующих радиоактивные материалы, при разработке радиоактивных руд, неправильном хранении радиоактивных отходов, а также при испытании и применении ядерного оружия.

Естественная радиоактивность, включая радоновую, вносит определенный вклад в уровень радиоактивного загрязнения территории Казахстана. Сами по себе природные очаги не опасны, но в действительности необходимо знать, из какого родника можно пить, из какого материала можно строить.

Из естественных источников наибольшую опасность представляет загрязнение радоном. Согласно оценке ООН, радон и продукты его распада составляют ѕ годовой индивидуальной эффективной дозы облучения, получаемой населением от земных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в организм при дыхании, особенно в непроветриваемых помещениях.

Радон освобождается из земной коры повсеместно, но концентрация его в разных точках земного шара различна. Известны регионы, расположенные в Индии и Иране, с высоким уровнем земной радиации радона.

В Казахстане концентрация радона в закрытых помещениях в среднем в 6-8 раз выше, чем в атмосферном воздухе вне помещения. Главный источник радона в закрытых помещениях — грунт. Особенности грунта, тип строительных материалов существенно влияют на концентрацию радона в помещениях.

На территории Казахстана имеется ряд крупных урановорудных провинций и районов. Это Северо-Казахстанская, Бетпак-Далинская, Илийская, Прикаспийская провинции. Кроме того, выделяются массивы горных пород с высокой концентрацией естественных радионуклеидов (граниты, туфы и т.д.)

Уровень загрязнения радоном может быть снижен. В деревянных домах, как установлено исследованиями, уровень радонового загрязнения снижается в 2 раза, а в каменных домах — в 10 раз.

Наиболее тяжелое последствие радиационного поражения человека — острая лучевая болезнь, как правило, заканчивается смертью. Длительное, в течение ряда лет, облучение приводит к хронической лучевой болезни, снижению иммунитета организма, помутнению хрусталика глаза с полной или частичной утратой зрения, снижению функций щитовидной железы. Даже через много лет после облучения возможно возникновение мутаций (нарушений механизма наследственности) и других повреждений клеточных структур, которые служат причиной доброкачественных и злокачественных опухолей. С мутациями также связаны многочисленные врожденные нарушения и уродства, которые передаются по наследству.

Радиационная обстановка в Казахстане определяется не только естественным (природным) фоном, но и загрязнениями от последствий испытаний ядерного оружия, которое проводилось в 1950-1990 г.г. По некоторым данным было проведено 400 взрывов ядерного оружия, причем некоторые из них проводились на земной поверхности.

Основными источниками излучения при ядерном взрыве являются продукты деления, наведенная нейтронами активность, трансурановые элементы и тритий. Судьба радионуклидов, попавших в природную среду, зависит от их растворимости и биологической доступности. Смыв радионуклидов с поверхности происходит медленно, также медленно они поступают в растения через корневую систему.

Основная угроза радиационного загрязнения исходит от оставленных или брошенных объектов — таких на территории Казахстана выявлено более 100. Среди них Прикаспийский горно-металлургический комбинат в Актау, рудники Кокшетауской области и др. По данным президента АО ННК «Казатомпром» Мухтара Жакишева, уровень мощности радиационной дозы практически от всех 100 брошенных отвалов превышает предельно допустимый коэффициент более чем в 50 раз.

Известный радиоэколог, Рыспек Ибраев, выделил три округа, которые связаны с атомной промышленностью и радиационным загрязнением территории республики. Самый восточный округ — Сары-Арка. В этом округе расположен СИЯП — Семипалатинский испытательный ядерный полигон. Здесь находится также Ульбинский завод, где перерабатывается урановый концентрат.

Для оздоровления радиоэкологической ситуации на территории Казахстана необходимо выполнить следующие работы:

— Завершить создание надежной правовой информационной базы.

— Провести размещение на долговременное хранение отработанного топлива.

— Осуществить рекультивацию и захоронение отходов урановой промышленности.

2.4 Ионный состав Мирового океана

Ионный состав морской воды — основной ионный состав морской воды; определяется концентрациями семи ионов: хлора, сульфатного, гидрокарбонатного, натрия, калия, магния, кальция.

Ежегодно в Мировой океан попадает более 10 млн. т нефти и до 20% его площади уже покрыты нефтяной пленкой. В первую очередь это связано с тем, что добыча нефти и газа в Мировом океане стала важнейшим компонентом нефтегазового комплекса. В 1993 году в океане добыто 850 млн. т нефти (почти 30% мировой добычи). В мире пробурено около 2500 скважин, из них 800 в США, 540 — в Юго-Восточной Азии, 400 — в Северном море, 150 — в Персидском заливе. Эти скважины пробурены на глубинах до 900 м.

Загрязнение гидросферы водным транспортом происходит по двум каналам. Во-первых, морские и речные суда загрязняют ее отходами, получаемыми в результате эксплуатационной деятельности, и, во-вторых, выбросами в случае аварий токсичных грузов, большей частью нефти и нефтепродуктов. Энергетические установки судов (в основном дизельные двигатели) постоянно загрязняют атмосферу, откуда токсичные вещества частично или почти полностью попадают в воды рек, морей и океанов.

Нефть и нефтепродукты являются главными загрязнителями водного бассейна. На танкерах, перевозящих нефть и ее производные, перед каждой очередной загрузкой, как правило, промываются емкости (танки) для удаления остатков ранее перевезенного груза. Промывочная вода, а с ней и остатки груза обычно сбрасываются за борт. Кроме того, после доставки нефтегрузов в порты назначения танкеры чаще всего направляются к пункту новой погрузки порожними. В этом случае для обеспечения надлежащей осадки и безопасности плавания танки судна наполняются балластной водой. Эта вода загрязняется нефтяными остатками, а перед погрузкой нефти и нефтепродуктов выливается в море. Из общего грузооборота мирового морского флота в настоящее время 49% падает на нефть и ее производные. Ежегодно около 6000 танкеров международных флотилий транспортируют 3 млрд. т нефти. По мере роста перевозок нефтегрузов все большее количество нефти стало попадать в океан при авариях.

Для предотвращения подобных катастроф разрабатываются двухкорпусные танкеры. При аварии, если будет поврежден один корпус, второй предотвратит попадание нефти в море.

Происходит загрязнение океана и другими видами отходов промышленности. Во все моря мира сброшено примерно 20 млрд. т мусора (1988 год). Подсчитано, что на 1 кв. км океана приходится в среднем 17 т отбросов. Зафиксировано, что за один день в Северное море было сброшено 98 тыс. т отбросов (1987 год).

Три реки, впадающие в Северное море, Рейн, Маас и Эльба, ежегодно приносили 28 млн. т цинка, почти 11000 т свинца, 5600 т меди, а также 950 т мышьяка, кадмий, ртуть и 150 тыс. т нефти, 100 тыс. т фосфатов и даже радиоактивные отходы в разных количествах (данные на 1996 год). С судов ежегодно сбрасывалось 145 млн. т обычного мусора. Англия сбрасывала 5 млн. т канализационных стоков в год.

В результате добычи нефти из трубопроводов, связывающих нефтяные платформы с материком, каждый год в море вытекало около 30000 т нефтепродуктов. Последствия этого загрязнения нетрудно видеть. Целый ряд видов, которые некогда обитали в Северном море, в том числе лосось, осетр, устрицы, скаты и пикша, просто-напросто исчезли. Гибнут тюлени, другие обитатели этого моря нередко страдают от инфекционных заболеваний кожи, имеют деформированный скелет и злокачественные опухоли. Гибнет птица, питающаяся рыбой или отравившаяся морской водой. Наблюдалось цветение ядовитых водорослей, которое привело к уменьшению рыбных запасов (1988 год).

Происходит загрязнение Адриатического и Средиземного морей. Только через реку По в Адриатическое море с предприятий промышленности и сельскохозяйственных ферм ежегодно попадает 30 тыс. т фосфора, 80 тыс. т азота, 60 тыс. т углеводорода, тысячи тонн свинца и хрома, 3 тыс. т цинка, 250 т мышьяка (1988 год).

Средиземному морю грозит участь превратиться в мусорную свалку, сточную яму трех континентов. Ежегодно в море попадает 60 тыс. т моющих веществ, 24 тыс. т хрома, тысячи тонн нитратов, применяемых в сельском хозяйстве. К тому же 85% вод, сбрасываемых из 120 крупных приморских городов, не очищаются (1989 год), а самоочищение (полное обновление вод) Средиземного моря осуществляется через Гибралтарский пролив за 80 лет.

Серьезную экологическую угрозу для жизни в Мировом океане и, следовательно, для человека представляет захоронение на морском дне радиоактивных отходов (РАО) и сброс в море жидких радиоактивных отходов (ЖРО). Западные страны (США, Великобритания, Франция, Германия, Италия и др.) СССР с 1946 года начали активно использовать океанские глубины для того, чтобы избавляться от РАО.

В 1972 году была подписана Лондонская конвенция, запрещающая сброс на дно морей и океанов радиоактивных и ядовитых химических отходов. К той конвенции присоединилась и наша страна. Военные корабли, в соответствии с международным правом, в разрешении на сброс не нуждаются. В 1993 году запрещен сброс ЖРО в море.

В 1982 году 3-я Конференция ООН по морскому праву приняла конвенцию по мирному использованию Мирового океана в интересах всех стран и народов, которая содержит около тысячи международно-правовых норм, регламентирующих все основные вопросы использования ресурсов океана.

Билет № 26.
    1. Сертификация технических устройств. Экспертиза и декларация промышленной безопасности.

Сертификация — это процесс и правила проведения работ, в результате которых выдается сертификат. Правила прове­дения сертификации устанавливаются федеральным органом исполнительной власти по стандартизации, метрологии и сер­тификации совместно с Госгортехнадзором России и его тер­риториальными органами.

Сертификацию проводят аккредитованные организации. На ОПО применяются разнообразные технические устрой­ства, подлежащие сертификации.

Основные классы технических устройств, разрешение на изготовление и применение которых выдает Федеральный горный и промышленный надзор России (БТП 2/99), приво­дятся ниже.

• Оборудование подъемно-транспортное (грузоподъемные краны, подъемники (вышки), лифты, эскалаторы, конвейеры пассажирские, дороги канатные и другое оборудование).

• Котельное оборудование, трубопроводы пара и горя­чей воды, оборудование, работающее под давлением более 0,7 кгс/см2

• Взрывозащищенное и рудничное электрооборудование.

• Технические устройства для горнодобывающих и горнообогатительных производств и подземных объектов, не связанных с добычей полезных ископаемых.

• Оборудование и приборы, используемые при выполне­нии взрывных работ в промышленных целях.

• Газовое оборудование котлов, технологических линий и агрегатов, газогорелочные устройства, емкостные и про­точные водонагреватели.

• Технические устройства для нефтегазодобывающих производств (оборудование нефтегазопромысловое, газоперерабатывающее, буровое; оборудование для геологоразве­дочных и геофизических работ; оборудование для магистраль­ного трубопроводного транспорта).

• Технические устройства, применяемые на опасных про­изводственных объектах химических, нефтехимических, неф­теперерабатывающих и других производств, работающие с взрывопожароопасными, токсичными, агрессивными среда­ми, в том числе емкостное, реакторное, машинное, криоген­ное, холодильное, электролизное, массообменное, теплообменное, фильтрующее, размольное, сушильное и смеситель­ное оборудование, печи, резервуары, системы и средства противоаварийной защиты, сигнализации и контроля, приборы и другое оборудование, поставляемое как отдельно, так и комплектно, включая составные части и узлы.

• Технические устройства для опасных производственных объектов по хранению и переработке зерна.

• Оборудование для черной и цветной металлургии опас­ных производственных объектов (доменное, коксовое, стале­плавильное, технологическое для цветной металлургии; аг­регаты сталеплавильные, вакуумирования и рафинирования стали; машины непрерывного литья для стали и полунепре­рывного литья цветных металлов, оборудование к ним; агре­гаты трубопрокатные и для алюминиевой и медной катанок, станы обжимные, заготовочные, сталепрокатные и листопро­катные).

• Электропечи, электропечные установки и устройства, где получаются расплавы черных и цветных металлов и спла­вы на основе этих расплавов (электропечи и агрегаты элек­тропечные индукционные; установки и устройства индукци­онные нагревательные; электропечи дуговые и рудно-термические; электропечи и установки сопротивления, новых ви­дов нагрева: плавильные и нагревательные).

• Оборудование для плавки чугуна.

• Средства газозащитной дыхательной аппаратуры (изо­лирующие респираторы, воздушные аппараты, изолирующие и фильтрующие самоспасатели), приборы газового контро­ля, технические устройства, в том числе специальные защит­ные костюмы для ликвидации аварийных ситуаций.

• Приборы и средства автоматизации, применяемые на опасных производственных объектах (приборы контроля и регулирования технологических процессов, программно-тех­нические комплексы для автоматизированных систем, маши­ны и приборы для измерения механических величин; прибо­ры автоматики безопасности; регуляторы давления, счетчи­ки, газоанализаторы).

• Насосы жидкостные и вакуумные, насосные агрегаты, компрессоры воздушные и газовые; части к ним.

• Цистерны, контейнеры специализированные и балло­ны для сжиженных газов, взрывопожароопасных и токсич­ных сред.

• Трубопроводы и их узлы: стальные, из цветных метал­лов и сплавов, неметаллических материалов — для опасных производственных объектов.

• Электросварочное оборудование, используемое на опас­ных производственных объектах.

• Арматура для технических устройств, применяемых на опасных производственных объектах.

В процессе эксплуатации технические устройства подле­жат экспертизе промышленной безопасности.

Федеральным законом от 18 декабря 2006 г. N 232-ФЗ в пункт 1 статьи 13 настоящего Федерального закона внесены изменения, вступающие в силу с 1 января 2007 г.

1. Экспертизе промышленной безопасности подлежат:

проектная документация на расширение, техническое перевооружение, консервацию и ликвидацию опасного производственного объекта;

технические устройства, применяемые на опасном производственном объекте;

здания и сооружения на опасном производственном объекте;

декларация промышленной безопасности, разрабатываемая в составе проектной документации на расширение, техническое перевооружение, консервацию и ликвидацию опасного производственного объекта, и иные документы, связанные с эксплуатацией опасного производственного объекта.

2. Экспертизу промышленной безопасности проводят организации, имеющие лицензию на проведение указанной экспертизы, за счет средств организации, предполагающей эксплуатацию опасного производственного объекта или эксплуатирующей его.

3. Результатом осуществления экспертизы промышленной безопасности является заключение.

4. Заключение экспертизы промышленной безопасности, представленное в федеральный орган исполнительной власти в области промышленной безопасности, или в его территориальный орган, рассматривается и утверждается ими в установленном порядке.

5. Порядок осуществления экспертизы промышленной безопасности и требования к оформлению заключения экспертизы промышленной безопасности устанавливаются федеральным органом исполнительной власти в области промышленной безопасности.

6. Экспертиза промышленной безопасности может осуществляться одновременно с осуществлением других экспертиз в установленном порядке.

Федеральным законом от 18 декабря 2006 г. N 232-ФЗ в статьи 14 настоящего Федерального закона внесены изменения, вступающие в силу с 1 января 2007 г.

Федеральным законом от 22 августа 2004 г. N 122-ФЗ в статью 14 настоящего Федерального закона внесены изменения, вступающие в силу с 1 января 2005 г.

Федеральным законом от 10 января 2003 г. N 15-ФЗ в статью 14 настоящего Федерального закона внесены изменения

Источник: helpiks.org


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.