Загрязнение биосферы радиоактивными веществами


Радиоактивное загрязнение окружающей среды представляет увеличение естественного фона излучения возникающего от деятельности человека, связанного с использованием естественных или искусственных радиоактивных материалов.

Радиоактивными веществами являются те, которые обладают способностью излучать высокоэнергетические частицы, такие как альфа-и бета-частицы и гамма-лучи.

Радиоактивное излучение этими веществами является неустойчивым по характеру и непрерывно выделяет эти частицы для того, чтобы обрести некоторую стабильность.

Вред высокоэнергетических частиц

Радиоактивное загрязнения не является постоянным или регулярным явлением и, следовательно, длительность и частота загрязнения зависит от времени и условий. Три основных типа условий.

  • непрерывное загрязнение: этого типа условие существует в урановых рудниках, ядерных реакторах и лабораториях, где люди находятся под постоянным воздействием веществ;
  • аварийное: этого типа состояние продолжается в течение случайного воздействия радиации вследствие поломки оборудования, утечки, неисправности защитных средств и т. д.;
  • случайное: это условие сохраняется в течение единичного эксперимента или при испытании ядерного вещества.

Источники радиоактивного загрязнения

Радиоактивное загрязнение растет из-за увеличения использования высокоэнергетических частиц. Это происходит в основном из отходов, которые остались после использования излучающих веществ. Радиоактивные отходы – это, как правило, продукт процесса, таких как ядерный распад, который широко используется в реакторах, оружие и другие ядерные топливные циклы.радиоактивное загрязнение

Часто радиоактивные отходы утилизируют без каких-либо мер предосторожности, чтобы изолировать выбросы, которые затем загрязняют воздух, почву и воду. Большое количество радиоактивных отходов образуется от ядерных реакторов, используемых на атомных электростанциях и для многих других целей. Это происходит при добыче и переработке радиоактивных материалов. Ядерные катастрофы и ядерные взрывы это два худших техногенных источника последующего радиоактивного излучения.

Основные источники,  засоряющие землю следующие:


  • при добыче урана
  • производстве ядерного топлива
  • в ядерных энергетических реакторах
  • использование радиоизотопов в промышленности для различного применения
  • ядерные испытания, проведенные сотрудниками обороны
  • утилизация ядерных отходов.

Выпадение высокоэнергетических осадков

Радиоактивное загрязнение, которое распространяется через атмосферу земли вызывает выпадение радиоактивных осадков. Пример этому ядерные бомбы Соединенных Штатов на Хиросиму и Нагасаки в Японии в 1945 году во время Второй Мировой Войны. В результате взрыва атомной бомбы погибло более 2 миллионов людей в результате длительного воздействия радиации в течение пяти лет из-за воздействия радиации.

Влияние высокоэнергетической радиации на здоровье человека

радиоактивное излучениеРадиоактивные вещества относятся к числу наиболее токсичных известных веществ. Мария Кюри, лауреат Нобелевской премии за открытие радиоактивности в 1903 году, стала жертвой радиоактивного загрязнения и умерла от лейкемии.


Низкие уровни воздействия радиации на небольшую часть тела могут повлиять на клеточные мембраны и вызывают раздражение кожи. Другие непосредственные эффекты воздействия ядерного излучения являются тошнота, рвота, диарея, потеря волос и ногтей, синяки из-за подкожного кровотечения и т. д.

Высокая мощность дозы облучения вызывает сильную острую токсичность и может быстро убить жертву. У жертвы снижаются жизненные силы и человек умирает от анемии, инфекции и кровотечения.

Высокое радиационное облучение в период беременности приводит к повреждению мозга. Младенцы между восьмой и пятнадцатой неделями беременности, которые подверглись воздействию атомной атаки на Хиросиму и Нагасаки во время Второй Мировой войны, как сообщалось, имели большую частоту поражения мозга с побочными эффектами, в т. ч. низкий интеллектуальный коэффициент и тяжелая умственная отсталость во многих случаях.

К другим негативным особенностям облучения является катаракта, лейкемия, злокачественные опухоли, сердечно-сосудистые заболевания, преждевременное старение и сокращение продолжительности жизни.

Излучение может нанести непоправимый ущерб генетическому материалу и привести к угрожающему жизни состоянию. Излучение вызывает генетические мутации, которые способствуют росту раковых клеток в организме. Последствия генетической мутации, как правило, передаются будущему поколению.

Контроль радиоактивного загрязнения

Так как радиоактивные загрязнения очень опасны для здоровья человека, поэтому профилактика и контроль этих выбросов неизбежен. Это может быть проконтролировано несколькими способами, которые заключаются в следующем:


  • Постоянная проверка утечки радиоактивных материалов, включая ядерные реакторы, предприятий и лабораторий.
  • Используемый материал должен быть безопасным и надежным.
  • Высокоэнергетические материалы должны храниться в безопасных местах и должны быть изменены в безвредные формы.
  • Отходы с очень низким излучением необходимо также утилизировать.
  • Атомные электростанции должны соблюдать все инструкции по технике безопасности.
  • Защитную одежду следует надевать рабочим работающим на АЭС.
  • Естественный радиационный фон должны быть в допустимых пределах.
  • Ядерные устройства должны взрываться под землей.
  • Загрязняющие вещества могут быть использованы для уменьшения радиоактивных выбросов.
  • Производство радиоизотопов должно быть сведено к минимуму.
  • Крайние меры предосторожности следует принимать во время утилизации промышленных отходов, содержащих радионуклиды.
  • Высокая эффективность дымохода и вентиляции должны быть использованы на рабочих местах, где излучение высоко.
  • В ядерных реакторах должна быть закрытая система охлаждения цикла с газообразным теплоносителями очень высокой чистоты для предотвращения посторонних продуктов активации.
  • Реакции деления должны быть сведены к минимуму.
  • В ядерных шахтах мокрое бурение может быть использовано вместе с подземным дренажем.
  • Ядерную медицину и лучевую терапию следует применять только в случае крайней необходимости.

Вывод:

Поскольку радиоактивное излучение изменяет генетический материал, поэтому это вызывает дефекты передающиеся от родителей к потомству. Следовательно, профилактика и контроль неизбежны, чтобы избежать это вредное влияние на здоровье человека.

Источник: v-nayke.ru

Актуальность темы

Радиоактивное загрязнение биосферы — это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате ава­рий на АЭС или других предприятиях, при взрыве месторождений угля и его добычи и т.п.

Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище no сравнению с тепло­энергетикой, поскольку исключает вредные вы­бросы в атмосферу (зола, диоксиды, углерода и се­ры, оксиды азота и др.

Научные открытия и развитие физико-химических технологий в XX в. привели к появлению искусственных источников радиации, представляющих большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа.


Естественный радиационный фон обусловлен рассеянной радиоактивностью земной ко­ры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8—9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с пе­риодом полураспада (T1/2) более 105 лет (в основном урана и тория), а также 40К, 14С, 226Ra и 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты. Из-за неравномерности распределения источников из­лучения в земной коре существуют некоторые региональные различия фона и его локальные аномалии, представляющих большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа. Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности — в среднем до 11— 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв.

Эту прибавку обусловили:

а) технические источники проникающей радиации (медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигналь­ной индикации и т.п.);


б) извлекаемые из недр минералы, топливо и вода;

в) ядерные реакции в энергетике и ядерно-топливном цикле;

г) испытания и применение ядерного оружия.

е) человек стал использовать строй материалы, радиоактивность подчас очень велика(гравий, глинозем, граниты.) .

Деятельность человека в несколько раз увеличила число присутствующих в среде радионуклидов и на несколько поряд­ков — их массу на поверхности планеты Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью. или аварий и утечек в ядерно-топливном цикле — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.

Среди существующих видов загрязнений – химическое, физическое, биологическое, механическое, менее изученное — радиационное. Оно значительно отличается от других загрязнений. Радиоактивные нуклиды — это ядра, характеризующиеся испусканием заряженных частиц — альфа, бета, гамма частиц. Эти частицы, попадая в организм человека, разрушают его клетки, вызывают соматическое явление и генетические изменения.


При этом никакие внешние воздействия – ни химическое, ни температура, ни давление, не могут изменить лавного — периода полураспада, лежащего в очень широких пределах от долей секунд, до миллиардов лет.

Для количественной характеристики воздействия излучения на человека используют единицы: биологический эквивалент рентгена — бэр или зиверт (100 бэр). В результате внутреннего и внешнего облучения человек в течение года получает дозу 0,1 бэр, следовательно, за всю свою жизнь около 7 бэр.

Радиоактивные вещества, попадающие в атмосферу при добыче угля тоже могут представлять опасность. Однако при современном уровне защитной техники этот источник радиоактивности незначи­телен. И я решила убедиться в этом самостоятельно.

Тема: Исследование радиационного фона города Черемхово и Черемховского угольного месторождения.

Объект исследования: Радиационное загрязнение при добыче каменного угля.

Предмет исследования: г. Черемхово и Черемховское угольное месторождение.

Гипотеза: Радиационное загрязнение при добыче каменного угля и радиационный фон г. Черемхово находится на высоком уровне.

Цель исследования: Выявить радиационное загрязнение на территории г. Черемхово и Черемховского угольного месторождения.

Задачи исследования:


1) Изучение и структурирование теоретического материала;

2) Изучение статистических данных радиационного фона г. Черемхово и Черемховского угольного месторождения;

3) Творческая командировка на Черемховский разрез и ЧГМО г. Черемхово- отдел экологии, с целью сбора необходимого материала для написания работы;

4) Сделать анализ радиационного фона г. Черемхово (1993 год и 2009 г.г.) и Черемховского угольного месторождения (2009 г);

5) Сделать выводы.

Методы исследования:

1) контент — анализ

2) анализ статистических данных

3) наблюдения

4) интервьюирование

Методологической основой исследования стали работы:

a. данные Черемховского разреза – Доклад на заседании ЦКР РОСНЕДРА филиал «разрез Черемховский»,

b. интернет ресурсы

с. А.П. Акимова. «Экология».

Представленная работа состоит из двух частей:

В первой-теоретической части описывается экологическое состояние окружающей среды — загрязнение атмосферного воздуха, экологическая проблема озонового слоя, радиационное загрязнение — причина, которого кроется в быстром росте промышленности, сопровождающейся глобальным загрязнением природной среды.


Во второй-исследовательской части исследуется радиационный фон г. Черемхово и Черемховского угольного месторождения. Его влияния на организм человека.

В приложениях представлены:

1)Карты Черемховского разреза 2)Интервью

1.Возникновение радиационного фона

1.1Радиационный фон (Справка.)

Ежегодно в мире сжигается свыше 10 млрд. т условного топлива, при этом выбрасывается в воздух более 1 млрд. т различных взвесей, среди которых много канцерогенных веществ. Согласно обзору ВНИИ Медицинской информации, за последние 100 лет в атмосферу попало более 1,5 млн. т мышьяка, 900 тыс. т кобальта, 1 млн. т кремния. Только в атмосферу США ежегодно выбрасывается более 200 млн. т вредных веществ2.

Начавшееся во второй половине ХХ века резкое потепление климата является достоверным фактом. Средняя температура приземного слоя воздуха по сравнению с 1956-1957 гг., когда проводился первый международный геофизический год, возросла на 0,7° С. На экваторе потепления нет, но чем ближе к полюсам, тем оно заметнее. За Полярным кругом оно достигает 2° С. На Северном полюсе подлёдная вода потеплела на 1° С и ледяной покров начал подтаивать снизу4. Одни учёные считают, что потепление – результат сжигания огромной массы органического топлива и выделения в атмосферу больших количеств углекислого газа, который является парниковым, т.е. затрудняет отдачу тепла с поверхности Земли. Другие, ссылаясь на изменение климата в историческое время, считают антропогенный фактор потепления климата ничтожным и связывают это явление с усилением солнечной активности.

Не менее сложна экологическая проблема озонового слоя. Истощение озонового слоя представляет гораздо более опасную реальность для всего живого на Земле, чем падение какого-нибудь сверхкрупного метеорита. Озон не допускает опасное космическое излучение до поверхности Земли. Если бы не озон, эти лучи разрушили бы всё живое. Исследования причин истощения озонового слоя планеты не дали пока окончательных ответов на все вопросы.

Быстрый рост промышленности, сопровождающийся глобальным загрязнением природной среды, небывало остро поставил проблему сырьевых ресурсов.

В перспективе тревожно обстоит дело и с другим природным ресурсом, считавшимся раньше неисчерпаемым – кислородом атмосферы. При сжигании продуктов фотосинтеза прошлых эпох – горючих ископаемых, происходит связывание свободного кислорода в соединения. Ориентировочно в недрах Земли содержится 6,4´1015 т горючих ископаемых, на сжигание которых потребовалось бы 1,7´1016 т кислорода, т.е. больше, чем его насчитывается в атмосфере.

Следовательно, задолго до исчерпания запасов горючих ископаемых люди должны прекратить их сжигание, чтобы не задохнуться самим и не уничтожить всё живое.

Полагают, что запасы нефти на Земле истощатся через 200 лет, угля – через 200-300 лет, горючих сланцев и торфа – в этих же пределах. Примерно за это же время может быть исчерпано 2/3 запасов кислорода в атмосфере планеты. Следует учесть, что при возрастающих темпах потребления кислорода темпы его воспроизводства зелёными растениями неуклонно снижаются, поскольку развивающееся производство и множа­щееся население наступают на природу, отбирая у нее все но­вые зеленые площади для построек и угодий. Каждые 15 лет пло­щадь отчуждаемых земель удваивается и, по-видимому, предел освоения территории уже близок. Зеленые растения вытесняются не только постройками, но и расползаю­щейся полосой загрязнения. Особенно губительно загрязнение для фитопланктона, покрывавшего сплошным слоем водную поверхность планеты. Полагают, что он воспроизводит около 34% кислорода атмосферы.

Источник: mirznanii.com

8) Аварии искусственных спутников земли и самолетов

    В 1964 г. потерпел аварию американский навигационный спутник SNAP-9A: он не вышел на орбиту и упал в Индийский океан. Авария спутника привела к распылению в атмосфере 629 ТБк 238Рu. Около 95% этого плутония выпало на поверхность Земли к концу 1970 г. Падение SNAP-9A привело к существенному изменению соотношения 238Pu/239,240Pu в глобальных выпадениях. Авария советского спутника «Космос-954» в 1978 г. привела к поступлению в окружающую среду продуктов деления из бортового атомного реактора. Примерно 3/4 от общего количества РН рассеялись в верхних слоях атмосферы. Падение обломков произошло на территории Северной Америки.

9) Боеприпасы с обедненным ураном

    С 1990-х гг. дополнительным источником радиоактивного загрязнения окружающей среды в зонах локальных военных конфликтов (война в Пер­сидском заливе – 1991 г., военные действия в Боснии и Герцеговине – 1994 г., Сербии – 1999 г. и, наконец, в Ираке – 2003 г.) стал обедненный уран (ОУ).
    Обедненному урану были посвящены обширные исследования окружающей среды, несколько научных конференций, а также многочисленные публикации в научной литературе. Использование ОУ в военных целях связано с тем, что он является очень плотным металлом (плотность 19 г/см3), имеет высокую температуру плавления (1132°С), весьма пирофорен1 и обладает пределом прочности на разрыв, соизмеримым с пределами для большинства типов сталей. Это делает его идеальным для применения в бронебойных боеприпасах и усиленной броне (рис.5.29).

Загрязнение биосферы радиоактивными веществами

Рис.5.29. Пояснение того, что происходит, когда в бронированную машину попадает сердечник из обедненного урана (в данном случае 25-мм снаряд, выпущенный из подвесного пушечного контейнера GPU-5/А).

    Пыль ОУ, образующаяся при столкновении с мишенью, может рассеяться и загрязнить окружающую среду. По оценкам обычно 10-35% (максимально до 70%) пробойника из ОУ превращается в аэрозоли при соударении или при возгорании ОУ. Размеры большей части пылевых частиц меньше 5 мкм, поэтому они удерживаются в воздухе в течение длительного времени и разносятся ветром. Согласно исследованиям, проведенным на местах испытаний в США, большая часть осевшей пыли ОУ выпадает в пределах 100 м от мишени. Однако пыль ОУ может переноситься на расстояния до 40 км, оставаясь в воздухе в течение значительного времени.
    Гражданское использование ОУ ограничено в основном производством стабилизаторов для самолетов и судов. Подсчитано, что только в США к настоящему времени накоплено примерно 600 000 т ОУ. Около 320 т ОУ было рассеяно в окружающей среде во время войны в Персидском заливе в начале 1990-х гг., и около 15 т – было использовано через несколько лет на Балканах.
    Вопреки общественному заблуждению, главная опасность для здоровья связана не с радиоактивностью ОУ, а, как и в случае других тяжелых металлов, с его химической токсичностью (поражает в основном почки). Однако ОУ, полученный в результате переработки облученного ядерного топлива, использовавшегося в ядерных реакторах, содержит широкий спектр трансурановых радионуклидов, что повышает его радиационную опасность. Так в боеголовках из ОУ, собранных в Косово, были обнаружены следы 236U и 239+240Pu. Сообщалось, что также присутствовали следовые количества Am, Np и 99Тс.
    Опасность для здоровья может возникать в результате вдыхания или поступления с пищей аэрозолей или частиц, которые образуются при возгорании снарядов и брони из ОУ во время удара или в результате проникновения фрагментов в почву или другие поверхности. Особенно важен размер частиц, ассоциированных с радионуклидами: большие частицы (5-30 мкм) обычно оседают в верхней части дыхательных путей, в то время как малые частицы (~1 мкм) могут достигать нижних частей дыхательной системы и оседать в альвеолах, подвергая легочные ткани облучению, и в пределе переходить в циркуляционные отделы с биологическим периодом полувыведения около 1 года. Повышенные содержания урана в моче ветеранов войны в Заливе, имеющих в своих телах вонзившиеся осколки шрапнели с ОУ, обнаруживались даже спустя 7 лет после военных действий.

10) Радиоактивные отходы

    После запрещения испытаний ядерного оружия в трех сферах проблема уничтожения радиоактивных отходов, образующихся в процессе использования атомной энергии в мирных целях, занимает одно из первых мест среди всех проблем радиационной экологии.
    По физическому состоянию радиоактивные отходы (РАО) подразделяются на твердые, жидкие и газообразные. Жидкие и твердые радиоактивные отходы подразделяются по удельной активности на 3 категории: низкоактивные, среднеактивные и высокоактивные.
    Для сбора радиоактивных отходов в организации должны быть специальные сборники. Места расположения сборников должны обеспечиваться защитными приспособлениями для снижения излучения за их пределами до допустимого уровня.
    Передача РАО из организации на переработку или захоронение должна производиться в специальных контейнерах. Переработку, долговременное хранение и захоронение РАО, как правило, производят специализированные организации.

Загрязнение биосферы радиоактивными веществами
Рис.5.30. Общая схема обращения с радиоактивными отходами.

    Хранилища радиоактивных отходов размещаются глубоко под землей (не менее 300 м), причем, за ними устанавливается постоянное наблюдение, так как радионуклиды выделяют большое количество тепла. Подземные хранилища РАО должны быть долговременными, рассчитанными на сотни и тысячи лет. Для облегчения захоронения и надежности последнего жидкие высокоактивные РАО превращают в твердые инертные вещества. В настоящее время основными методами переработки жидких РАО являются цементирование и остеклование с последующим заключением в стальные контейнеры, которые хранятся под землей на глубине нескольких сотен метров. Радиоактивные отходы в большом количестве производят атомные электростанции, исследовательские реакторы и военная сфера (ядерные реакторы кораблей и подводных лодок).

    Глубокое захоронение РАО используется не случайно. Естественные изменения геологической среды сопровождаются возникновением глубинных источников сейсмических колебаний, вызывающих на поверхности землетрясения различной интенсивности вплоть до разрушительных. Естественная сейсмичность является фактором, лимитирующим создание ответственных сооружений, в том числе связанных с обращением с отходами. Применительно к глубинному захоронению жидких, в том числе радиоактивных, отходов оценка сейсмической опасности имеет свои особенности, что обусловлено уменьшением сейсмического воздействия с глубиной.
    По данным оценок Канадских геологов по заказу компании «Онтарио-Гидро» в связи с захоронением отвержденных РАО, интенсивность сейсмического воздействия с глубиной уменьшается по зависимости, близкой к экспоненциальной. В мировой практике известны случаи, например в Китае, когда при землетрясениях горные выработки сохраняли устойчивость и все из находящихся в них шахтеры поднимались на поверхность, хотя населенный пункт рядом с шахтой был полностью разрушен. При разрушительном Газлийском землетрясении глубокие буровые скважины, использующиеся для добычи газа, практически не были повреждены, хотя поверхностное оборудование претерпело разрушения.
    В связи с этим ограничение создания полигонов захоронения жидких РАО по сейсмичности относится, прежде всего, к поверхностным сооружениям – павильонам скважин, трубопроводам, насосным станциям и т.д., которые при необходимости могут быть построены в сейсмостойком исполнении. Тем не менее, в районах, характеризующихся повышенной сейсмичностью и подобными землетрясениями, глубинное захоронение жидких РАО обычно не проводится.
    Иной характер может иметь деятельность человека. Бурение глубоких скважин в местах захоронения РАО, проходка горных выработок может привести к вскрытию коллекторских горизонтов, содержащих отходы, попаданию компонентов отходов на поверхность, в неглубокозалегающие грунтовые воды.
    Для предупреждения подобных явлений в районе полигонов захоронения отходов вводятся ограничения пользования недрами.

    Жидкие РАО Военно-Морского флота хранятся в береговых и плавучих емкостях в регионах, где базируются корабли с атомными двигателями. Годовое поступление таких РАО около 1300 м3. Они перерабатываются двумя техническими транспортными судами (один на Северном, другой на Тихоокеанском флотах). Кроме того, в связи с интенсификацией применения ионизирующего излучения в хозяйственной деятельности человека, с каждым годом возрастает объем отработанных радиоактивных источников, поступающих с предприятий и учреждений, использующих в своей работе радиоизотопы. Большая часть таких предприятий находится в Москве (около 1000), областных и республиканских центрах. Эта категория РАО утилизируется через централизованную систему территориальных организаций.
    Кроме РАО существует проблема отработанного ядерного топлива АЭС. Отработанное топливо перевозится на радиохимические комбинаты со специальными подземными хранилищами. Затем оно регенерируется и отправляется на АЭС для повторного использования в качестве ядерного горючего.

Рис.5.31. Окончательное удаление РАО в хранилища: низкоактивные – в приповерхностные, среднеактивные – в подземные, высокоактивные – в глубокие геологические формации.
Рис. 5.32. Районы сброса жидких РАО на Дальнем Востоке.

    В России разработана и осуществляется федеральная целевая программа «Обращение с РАО и отработавшими ядерными материалами, их утилизация и захоронение», утвержденная постановлением Правительства РФ. Поскольку Россия не в состоянии своими силами ускорить темп утилизации списанных АПЛ, частичное финансирование этих работ на безвозмездной основе осуществляют Норвегия, США, Франция и Великобритания.
    В настоящее время Россия прекратила сброс РАО в северные моря, в результате чего списанные и выведенные из эксплуатации атомные подводные лодки с невыгруженным ядерным горючим переполняют гавани и побережье Арктики, где расположены базы Северного флота, а также судостроительные и судоремонтные заводы.
    США и страны Западной Европы затапливали свои РАО в северо-восточной части Тихого океана, в северо-восточном и северо-западном секторах Атлантики.

Загрязнение биосферы радиоактивными веществами

Рис.5.33. Составленная NRDC2 карта размещения ядерных реакторов и хранилищ отработанного ядерного топлива на территории США.

    В США политика в области обращения с атомными отходами была сформулирована в 1982 году, когда был принят Акт о политике в области обращения с атомными отходами (Nuclear Waste Policy Act), который предусматривал геологическое захоронение высокоактивных отходов без переработки, а все предприятия ядерно-энергетического комплекса отчисляют в фонд специальный налог. Захоронение военных отходов оплачивается Федеральным правительством.
    После принятия этого акта было предложено для изучения девять площадок в шести штатах. Некоторое время планировалось организовать хранилище радиоактивных отходов в округе Деф-Смит, но в дальнейшем отказались от этой идеи в пользу Юкка-Маунтин. Самой ранней предполагаемой датой для начала строительства репозитория считается 2013 г. В результате атомная промышленность США до сих пор не имеет возможности долговременного захоронения радиоактивных отходов. Существующее в США глубокое геологическое хранилище Waste Isolation Pilot Plant принимает отходы только от оборонной индустрии. В настоящее время радиоактивные отходы в США хранятся на местах производства, что гораздо более опасно и накладно, чем перевозка и захоронение их в репозитории. Поэтому отказ администрации Обамы от продолжения проекта вызвал множество судебных исков, где защитниками проекта являются представители атомной промышленности и муниципалитетов, в которых находятся временные склады радиоактивных отходов, а с другой стороны – представители штата Невада, ряда экологических и общественных групп и в настоящее время федеральных властей.
    К существенным загрязнениям морской среды привела работа западноевропейских предприятий, перерабатывающих отработанное ядерное топливо. Наибольшее значение имеют два британских предприя­тия (Селлафилд и Доунрей) и французское «Кожема», расположенное на мысе Аг (рис. 5.34). Так, находящийся на восточном побережье Ирландского моря комплекс Селлафилд с 1951 г. проводит плановые сбросы низ­коактивных жидких отходов по трубопроводам в Ирландское море. Два других крупных европейских предприятия внесли существенно меньший вклад в загрязнение окружающей среды искусственными радионуклидами.

Загрязнение биосферы радиоактивными веществами
Рис. 5.34. Европейские предприятия по переработке ядерного топлива: 1 – Селлафилд, 2 – мыс Аг,
3 – Доунрей.
Рис. 5.35. Годовые сбросы 137Cs в Ирландское море комплексом Селлафилд.

На рис. 5.35 представлены изменения годового сброса 137Cs предприятием в Селлафилде. Максимальный сброс по β-излучающим РН пришелся на 1975 г. (9 ПБк), а по α-излучающим –
на 1973 г. (180 ТБк). Общая активность сбросов за 1952-1994 гг. оценивается в 39 ПБк 3Н, 41 ПБк 137Cs, 6 ПБк 134Cs, 6 ПБк 90Sr, 120 ТБк 238Рu, 610 ТБк 239,240Pu, 22 ПБк 241Рu, 540 ТБк 241Am. К 1992 г. сбросы многих долгоживущих РН (137Cs, трансурановых элементов) уменьшились примерно на два порядка по сравнению с серединой 1970-х гг. Тем не менее, загрязнение Северной Атлантики и Арктики 129I к 1997 г. выросло примерно в 2.5 раза по сравнению с началом 1990-х гг., сбросы 99Тс достигли максимума к 1995 г.
    Дальнейшая миграция РН, сбрасываемых в Ирландское море и Ла-Манш, определяется преобладающими течениями. Огибая Великобританию с юга и востока, радионуклиды поступают в Северное море, далее через Датские проливы проникают в Балтику. Значительная часть радионуклидов движется вдоль северо-западного побережья Норвегии, где делится на две основные ветви, одна из которых направляется к западу от Шпицбергена, другая – в сторону Баренцева моря. По усредненным оценкам, время переноса радионуклидов с водными массами из Селлафилда в Баренцево и Карское моря составляет 5-6 лет.

11) «Космический мусор».

    Мы все заслуженно гордимся достижениями космонавтики. С помощью космических аппаратов землян изучали Луну, все планеты Солнечной системы, их спутники, астероиды и кометы. Космические аппараты «Пионер-10» и «Вояджеры» стартовавшие более 30 лет тому назад и запущенный на околоземную орбиту телескоп «Хаббл» позволили получить уникальные сведения о планетах Солнечной системы и далеких звездных системах. Сегодня ни одна развитая страна мира не может обойтись без мобильной связи, телевидения, радиосвязи, средств наблюдения за опасными участками земной поверхности, космической навигации, космической разведки и т.п. И все это заслуги ИСЗ и космонавтики.
    Однако у космических исследований есть также и «обратная сторона»: запуски ракет, разрушение и падение фрагментов космических аппаратов приводят к серьезным экологическим проблемам на Земле и в космосе.
    Проблема экологии космической деятельности возникла практически после первых запусков крупных ракет, однако потребовались десятилетия, чтобы осознать всю ее серьезность.
    Влияние запусков ракет на поверхность планеты
во многом зависит от массы стартующих ракет, частоты запусков, т.е. грузопотока на орбиту. Последний составляет около 2200, 700 и 600 тонн в год для космодромов Байконур, мыс Канаверал и Плесецк соответственно.
    Высота самой большой ракеты «Аполлон» (именно с ее помощью были осуществлены пилотируемые полеты на Луну) превышала 100 метров, а масса была близка к 3 тыс. тонн. В настоящее время самая крупная ракета имеет массу около 2 тыс. тонн и высоту около 50 м. Такая ракета в секунду сжигает почти 10 т топлива и выбрасывает в атмосферу далеко не безвредные продукты сгорания. Самые «маленькие» космические ракеты имеют массу около 100 т. Масса топлива в ракетах всех типов – почти 90% массы ракеты.
    Наименее безобидным топливом считается жидкий водород. В результате его сгорания образуется водяной пар. Такое топливо использовалось в ракетах-носителях «Спейс Шаттл» (США). Кроме того, в этих же ракетах находят применение и твердотопливные ускорители, которые приводят к очень вредным выбросам. Украинская ракета «Зенит–2», как и российская «Союз», использует керосин – сравнительно безобидное топливо. В российской ракете «Протон» применяется очень агрессивное и высокотоксичное топливо – гидразин, гептил.
    Падение первых ступеней ракеты
. Все ракеты имеют разное число ступеней – от 2 до 6. Нулевая и первая ступени ракеты-носителя работают около 1–2 минут. После сгорания топлива ступени отстреливаются и падают сравнительно недалеко (на расстоянии около 100 км) от места старта ракеты. Вторые и третьи ступени падают на удалениях около 800 и 2500 км соответственно. Для запуска ракет отчуждается участок земной поверхности площадью от 1.5 до 5 тыс. км2. Только в СНГ под районы падений частей ракет отведены участки с суммарной площадью около 200 тыс. км2, что составляет 20% площади Украины.
    Опасность представляют как сами ступени ракет, так и особенно остатки топлива, нередко токсичного. Только в странах СНГ остаткам топлива от ракет «Протон», «Циклон» и «Космос» загрязнено около 10 тыс. км2 поверхности земли.

    Вот один из примеров нарушения экологического равновесия. Жители алтайского села Саратан рассказали, что первые несчастья у них начались еще в 1959 г. На альпийских лугах Алтая стали находить крупные обломки какой-то техники (многие думали инопланетной (о Байконуре в селе еще ничего не знали). Стали гибнуть лошади, коровы и овцы. Постепенно была уничтожена практически вся растительность, исчезли прекрасные высокогорные цветы. Затем улетели птицы: косачи, белые куропатки, глухари, кукушки и даже неприхотливые воробьи. Из окрестных лесов ушли лоси, волки и медведи. Наступила мертвая тишина. Жители алтайских сел стали рано седеть, страдать от заболеваний почек, печени, гипертонии, наблюдались случаи выпадения волос, зарегистрировано много случаев онкологических и странных психических заболеваний. Были отмечены случаи рождения детей-уродов. Столичные врачи связывали все это с воздействием ракетного топлива гептила, но правду больным не сообщали.

    Падение космических аппаратов и их фрагментов, отработавших на орбите и более неуправляемых, особенно если такие спутники имели ядерные силовые установки. Для штатного затопления грузовых КА «Прогресс» отведен район в южной части Тихого океана, восточнее Новой Зеландии. Его площадь составляет несколько миллионов квадратных километров, что в несколько раз превышает площадь Украины. Однако регулярно случаются и внештатные ситуации. Одна из таких угрожающих ситуаций возникла, например, 11 июля 1979 г. при падении обломков орбитальной станции (ОС) «Скайлэб» (США). Фрагменты рассеялись на площади в несколько тысяч квадратных километров, задев север Австралии и южную часть Индийского океана.
    Но даже управляемые спуски ОС таят в себе большую опасность. Дело в том, что на ОС возникает собственная загрязненная атмосфера, в которой развиваются малоизученные микроорганизмы. За 11 лет функционирования ОС «Мир» на ней появилось 140 видов микроорганизмов, у некоторых из них сменилось около 190 тыс. поколений. По мнению японских специалистов, эти микроорганизмы-мутанты представляют собой бактериологическое оружие. Они уже ставят космонавтов в экстремальные условия и угрожают землянам. Как поведут себя микробы после падения ОС в океан – не ясно и сегодня. В настоящее время на околоземных орбитах находится 58 объектов с ядерными и радиоизотопными установками. Их падение (а все КА рано или поздно падают) чревато серьезными экологическими последствиями.
    Влияние КА на приземную атмосферу
заключается, прежде всего, в том, что именно она первой принимает на себя удар стартующей ракеты. Здесь происходят наибольшие по массе выбросы продуктов сгорания. Здесь генерируются наибольшие по мощности акустические и электромагнитные (включая оптические) излучения.

Например, одна из наиболее экологически чистых ракет – «Спейс Шаттл» выбрасывает в атмосферу около 1850 т продуктов сгорания, примерно половину этой массы – в приземную атмосферу. Одной соляной кислоты инжектируется в среду 160 т, из них более 90 т – в приземную атмосферу. После этого на больших площадях наблюдаются обильные кислотные дожди.

    Влияние на погоду и климат. До последнего времени такое влияние аргументированно отрицалось. Сейчас отдельные специалисты, проведя наблюдения, их статистическую обработку и компьютерное моделирование, пришли к выводу, что запуски всего 60 аппаратов типа «Спейс Шаттл» в год должны привести к изменению метеоусловий по обе стороны Атлантики. Влияние запусков ракет на Байконуре является более локальным. Они обычно сопровождаются усилением осадков. Так ли это – покажет будущее. Если подобное влияние существует, то оно, скорее всего, связано со спусковыми эффектами и процессами самоорганизации в атмосфере. Кроме рассмотренного воздействия, запуски КА сопровождаются тепловым, газодинамическим, электромагнитным воздействием струи, динамическим воздействием корпуса ракеты и другими эффектами.
    Разрушение озоносферы
происходит за счет выбросов хлора и оксидов азота. При стартах ракет ежегодно в атмосферу инжектируется около 5 тыс. т хлора и 100 т оксидов азота. Исследования показали, что твердотельные ракеты наносят больший вред озоносфере, чем жидкостные. К счастью, пока что запуски КА способны разрушать озонсферу лишь вблизи места пролета ракеты, радиус возмущенной зоны не превышает нескольких километров. Глобальное влияние запусков при нынешней их интенсивности мало.
    Влияние космической деятельности на геокосмос
(примерно от 100 до 36 000 км). Благодаря сильной разреженности геокосмос значительно более уязвим, чем приземная атмосфера. Космическая деятельность влияет на экологию геокосмоса по нескольким каналам. К ним относятся выбросы больших объемов химических веществ, часто отсутствующих в естественных условиях, инжекция акустической, электромагнитной и тепловой энергии, засорение околоземной среды фрагментами ракет и космических аппаратов («космическим мусором»).
    Космический мусор
состоит из закончивших свою активную работу ИСЗ, последних ступеней ракет, разгонных блоков, обломков ракет и спутников, возникших в результате преднамеренных и аварийных взрывов. Необходимо помнить, что от 4 до 10% запусков ракет являются аварийными. За более чем 50 лет космической эры в геокосмос запущено более 25 тысяч искусственных космических объектов. Более 16 тысяч из их упали на поверхность Земли. Из остальных – в среднем только около 600 является действующими.
    Размеры фрагментов космического мусора изменяются от долей миллиметра до 5–6 метров. Только фрагментов размером более 10 см в геокосмосе находится около 8 тысяч. За ними ведется постоянное слежение, все данные о них занесены в специальные каталоги. Масса этих фрагментов превышает 3 тысячи тонн.
    Весь опыт человечества показывает: к чему бы человек ни прикоснулся – непременно наряду с несомненными благами появляются новые проблемы, в том числе и экологического характера. Уже сейчас экологическая проблема геокосмоса во весь рост стоит перед человечеством. Таков неизбежный итог техногенной деятельности человека в космосе. Научный и технологический прогресс остановить нельзя, остается лишь минимизировать его вредные экологические последствия.

1. Пирофорность – способность твёрдого материала в мелкораздробленном состоянии к самовоспламенению на воздухе при отсутствии нагрева.

2. Natural Resources Defense Council (NRDC) – некоммерческая, беспартийная международная экологическая правозащитная группа. Основана в 1970 г., включает около 1,3 млн. членов и онлайн-активистов в США и более 300 сотрудников: юристов, ученых и других экспертов политики.

Источник: nuclphys.sinp.msu.ru

Слайд 1

Виды дозиметров

Слайд 2

Дози́метр — прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение называется дозиметрией .

Слайд 3

Иногда «дозиметром» не совсем точно называют радиометр — прибор для измерения активности радионуклида в источнике или образце (в объёме жидкости, газа, аэрозоля, на загрязненных поверхностях) или плотности потока ионизирующих излучений для проверки на радиоактивность подозрительных предметов и оценки радиационной обстановки в данном месте в данный момент.Измерение вышеописанных величин называется радиометрией .

Слайд 4

Рентгенметр — разновидность радиометра для измерения мощности гамма-излучения . Бытовые приборы, как правило, комбинированные, имеют оба режима работы с переключением «дозиметр» — «радиометр», световую и (или) звуковую сигнализацию и дисплей для отсчёта измерений. Масса бытовых приборов от 400 до нескольких десятков граммов , размер позволяет положить их в карман. Некоторые современные модели можно надевать на запястье, как часы. Время непрерывной работы от одной батареи от нескольких суток до нескольких месяцев.

Слайд 5

Счётчики для дозиметрии всего организма Bomab ( The BOttle MAnikin Absober ) — фантом, разработанный в 1949 году и с тех пор принятый в Северной Америке, если не во всем мире, как отраслевой стандарт (ANSI 1995) для калибровки дозиметров, использующихся для дозиметрии всего организма ( whole body counting ).

Слайд 6

Фантом состоит из 10 полиэтиленовых бутылок, либо цилиндров или эллиптических баллонов, являющихся его головой, шеей, грудной клеткой, животом, бедрами, ногами и руками. Каждая секция заполнена радиоактивным раствором в воде, радиоактивность которого пропорциональна объёму каждой секции. Это имитирует однородное распределение материала по всему организму.

Слайд 7

Лёгочный счетчик Лёгочный счетчик ( en:Lung Counter ) — система, предназначенная для измерения и подсчета излучения от радиоактивных газов и аэрозолей, вдыхаемых человеком и достаточно нерастворимых в тканях тела, чтобы покинуть лёгкие в течение нескольких недель, месяцев или лет. Состоит из детектора или детекторов излучения и связанной с ними электронной части. Детекторы имитируют по форме, плотности и химическому составу ткани лёгких и окружающих органов. Полости в детекторах заполняются исследуемым радиоактивным газом или аэрозолем. Часто такая система размещается в нижних этажах помещений (для защиты от адронной компоненты космического фона) и окружена защитой от фонового гамма-излучения (толстые стенки из стали, свинца и других тяжёлых материалов) и нейтронного излучения (кадмий, бор, полиэтилен).

Слайд 8

Так как лёгочный счетчик в основном используется для измерения радиоактивных веществ, излучающих низкоэнергетичные гамма- или рентгеновские лучи, фантом, используемый для калибровки системы, должен быть антропометрическим. Такой фантом человеческого туловища разработан, например, в Ливерморской национальной лаборатории им. Э. Лоуренса ( Torso Phantom ).

Слайд 9

Индивидуальные дозиметры — бытовые дозиметры , предназначенные для ношения (как правило, в кармане одежды либо на поясном ремне) с целью предупредить человека о вхождении в зону с высоким уровнем гамма-излучения .

Слайд 10

Следует отметить, что распространенное наименование таких приборов «дозиметрами» не совсем верно, но исторически прижилось. «Настоящий» дозиметр в строгом его значении это, например, фотопленка, носимая в кармане, по засвечиванию которой можно судить о накопленной дозе, но которая не позволяет в реальном времени узнать плотность потока излучения. Данные электронные приборы было бы более точно называть дозиметрами-радиометрами.

Источник: nsportal.ru

Глобальность загрязнения

В настоящее время влияние человека на Землю достигло таких масштабов, что речь необходимо вести не о природе, как о неком абстрактном понятии или об окружающей среде, а именно о загрязнение биосферы.

Почему вопрос надо ставить таким образом?

История его, если можно говорить о такой истории, началась не вчера, не с началом научно-технической революции и даже не с появлением человека, а может быть, и жизни. Увеличение содержания каких-либо химических элементов, а также появление на той или иной территории не присущих определенному ореолу элементов, насчитывает миллиарды лет, то есть с момента образования Земли.

Благодаря таким процессам собственно и шла эволюция нашей планеты, которая привела к появлению жизни и комфортной для нее сферы обитания, то есть биосферы. Загрязнение биосферы на всем протяжении ее существования мало чем отличались. И это вполне естественно, потому что все живое и неживое на Земле состоит из одних и тех же химических элементов. В силу определенных причин они могли скапливаться в каких-то местах либо на Землю попадали из космоса новые вещества. Но все это были естественные или природные способы и источники.
С ними экосистема боролась сама, приспосабливалась, адаптировалась, сопротивлялась, стабилизировалась, то есть развивалась и эволюционировала.

То же самое происходило и с появлением человека, но до тех пор как не «свершилась» научно-техническая революция. С ней в биосферу, во все ее слои и те, где сконцентрирована жизнь на планете и в те, которые эту жизнь обеспечивают, стало поступать кратно увеличенное количество элементов.

С развитием химической ядерной промышленности биосфера стала насыщаться веществами искусственно произведенными, переработка их естественным путем невозможна, а также теми, которые могут быть переработаны в природе, но имеют слишком длительный срок такой переработки. Искусственными или ксенобиотикам являются вещества и соединения, рожденные современной наукой и получающие все большее применение в промышленном производстве. Другими, срок переработки которых в естественных условиях настолько велик, что их можно приравнять к предыдущей категории, являются радиоактивные вещества, образующиеся в результате проведения контролируемых ядерных реакций.

Сегодня загрязнению подвергаются:

  • вода;
  • почва;
  • воздух;
  • животные;
  • птицы;
  • рыбы;
  • растения;
  • и человек.

Наконец, человечество начало самостоятельно вырабатывать необходимую ему, и совершенно лишнюю для планеты, энергию. Энергетическое загрязнение набирает свои обороты. Если Земля за период своей эволюции всячески стремилась ограничить приток энергии, основным источником которой был и пока является Солнце, то человек действует в абсолютном диссонансе с природой. Увеличивая объемы вырабатываемой энергии, он совершенно не заботится об эффективности и полноте ее использования. А главное, о ее утилизации.

Человечество говорит о нехватке энергии для собственных нужд и максимально наращивает ее производство, в то время как использует не полностью. В то время как для природы, круговорота веществ в ней достаточно 10% энергии предыдущей ступени трофической цепи.

Биосфера вступила в новый «этап». В.И. Вернадский назвал его ноосфера, где благодаря человеку, биосферы источники загрязнения, виды и формы не только расширились и увеличились по объему, но и появились новые. Кроме внутренних, природных и космических, добавился антропогенный, то есть изобретенный и произведенный человеком. Несвойственных природе веществ и процессов становится все больше, а сфера их распространения все шире. Одними из таких видов является химическое и радиоактивное.

Химическое

Земля, все живое и неживое на ней состоит из химических элементов. Органическое и неорганическое вещество — это:

  • железо;
  • кислород;
  • кремний;
  • магний;
  • сера;
  • никель;
  • кальций;
  • алюминий;
  • азот;
  • фосфор;
  • углерод и т. д.

В различных формах, соединениях, соотношениях и пропорциях. Превышение допустимого, необходимого или природного уровня этих веществ в одном месте и есть химическое загрязнение биосферы. Пока его можно считать основным или базовым видом загрязнения.

Химическое может носить местный или локальный характер, быть одноразовым или постоянным. Ему могут подвергаться как живые организмы, так и косное вещество. Это загрязнение следует различать по характеру и степени нанесенного вреда и ущерба. Но самой важной характеристикой химического загрязнения должна быть возможность устранения последствий или хотя бы их локализация. К сожалению, в силу различных причин, ликвидация последствий редко приносит положительные результаты, а потому вполне можно говорить о том, что даже незначительное, оно становится частью общего, глобального.

Химическое загрязнение биосферы происходит разными способами, веществами и из различных источников. Одним, из которых, является химическая промышленность. Наряду с другими отраслями промышленного производства, транспортом, сельским хозяйством и энергетикой, предприятия этой отрасли меньше по объему загрязняющих веществ, но разнообразнее по составу. В первую очередь это:

  • органические растворители,
  • амины,
  • альдегиды,
  • хлор,
  • оксиды,
  • разнообразные ксенобиотики и многое другое.

Биосферу химическая промышленность загрязняет не только самим технологическим процессом, но и продукцией, а также результатами ее использования.

Химическому загрязнению подвергаются все слои биосферы.

Источниками загрязнения атмосферы являются:

  • промышленность;
  • транспорт;
  • тепловые станции.

«Лидируют» в этом процессе металлургия и предприятия химии. В гидросферу загрязнения попадают с промышленными сбросами, коммунально-бытовыми, талыми и ливневыми стоками. Основные загрязняющие вещества и соединения это:

  • мышьяк;
  • свинец;
  • ртуть;
  • неорганические кислоты;
  • углеводороды в разных видах и формах;
  • токсичные тяжелые металлы;
  • нефть и нефтепродукты.

У литосферы основной источник загрязнения – бытовой сектор. Не меньшая роль у промышленности, транспорта, сельского хозяйства и энергетики.  От них в почву поступают тяжелые металлы, пестициды, нефтепродукты, кислотные соединения и тому подобное.

Всего в производственной деятельности человек использует более 60 тысяч химических соединений. Наиболее распространенными из них являются:

  • оксид углерода;
  • сернистый и серный ангидрид;
  • сероводород;
  • оксиды азота;
  • двуокись серы;
  • соединения фтора;
  • свинца;
  • хлора;
  • углеводороды и их пары;
  • альдегиды и некоторые другие.

Химическое носит, как правило, комплексный эффект, то есть оно не воздействует на какой-то отдельный компонент биосферы, а поражает в ней и живое и неживое вещество.

Загрязнение биосферы химическими веществами, то есть веществами, из которых она состоит, приводит к изменению ее структуры и состава. Каков будет результат такой глубинной перестройки, на сегодняшний день и с нынешним уровнем научных знаний в это области, предсказать невозможно.

Радиоактивное

Радиоактивное загрязнение биосферы стало «возможно» с развитием человеческих познаний в область атомарного строения вещества. Первым актом такого загрязнения следует считать опытные испытания и военные применение, направленное против человека, в 1945 году ядерного оружия.

Биосферу, а значит все ее компоненты и составляющие, загрязняет так называемый радиоактивный химический элемент. Он может быть естественного или искусственного происхождения. К радиоактивным относят все изотопы такого элемента и все смеси, в которые он входит. Радиоактивным свойством элемента является его способность в результате происходящих изменений выбрасывать элементарные частицы, их кванты или ядерные фрагменты. Это природное свойство. Оно присуще элементам, по атомарной массе следующим за свинцом, согласно периодической таблице Д.И. Менделеева. Это:

  • калий;
  • кальций;
  • ванадий;
  • цирконий;
  • молибден;
  • кадмий;
  • вольфрам;
  • осмий;
  • платина;
  • висмут;
  • уран;
  • радий;
  • радон;
  • астат;
  • углерод-14.

Кроме того, радиоактивность можно определить как способность этих элементов, при создании определенных условий, генерировать энергию и распространять ее в виде потоков или волн. Такое явление называется радиацией. Основным источником энергии на Земле является Солнце. Но вырабатывать энергию могут как живые организмы, так и косное и биокосное вещество. Например, уголь, торф, базальт, гранит и некоторые другие руды.

Загрязнение радиоактивными веществами, по сути, носит характер загрязнения биосферы энергией, ее излишней концентрацией в живой и неживой природе.

Радиоактивное загрязнение биосферы относится к физическому виду загрязнений. Ему свойственно аккумулироваться или накапливаться в веществе, двигаясь вверх по трофической цепи. Больше всего радиоактивных веществ накапливают мхи и лишайники. В живом организме накапливание происходит в костных тканях.

Основными радиоактивными веществами являются:

  • Йод-131;
  • Стронций-90;
  • Цезий-137;
  • Кобальт-60;
  • Америт-241.

Период их полураспада или природной переработки может достигать 450 лет.

К природным, если можно так сказать, источникам радиоактивного загрязнения относят добычу торфа, угля, урановых руд и тому подобных. На местах разработок создаются в процессе эксплуатации рудника, а потом и остаются:

  • отвалы;
  • могильники;
  • зола;
  • пыль;
  • содержащие радиоактивные элементы;
  • а технологические;
  • сточные и ливневые воды;

разносят эти элементы далеко за пределы месторождения.

Основным и главным источником радиоактивного загрязнения Земли является искусственный, а именно деятельность человека в области исследования и использования атома и его энергии.

  • Атомные электростанции;
  • реакторы и двигатели;
  • ядерное топливо;
  • оружие;
  • их разработка;
  • испытание;
  • использование и утилизация;

все это источники попадания радиоактивных веществ в землю, воду, воздух, организмы животных и человека.

Более 400 атомных станций, военные и гражданские суда, сотни атомных взрывов и аварий, тысячи тонн ядерных отходов привели к необратимым в биосфере последствиям. В результате всего этого, кроме заражения, мутации и гибели живых организмов, происходят климатические изменение, тектонические сдвиги, повышение уровня подземных вод, осушение водоемов или, наоборот, наводнения, безжизненными становятся тысячи квадратных километров земель. И все это ради дополнительной энергии.

Радиоактивное загрязнение биосферы, как ни какое другое, несет в себе наиболее парадоксальный характер. Оно является последствием желания человека обладать дополнительной энергией, в то время как вся биологическая система Земли построена именно для уменьшения и сокращения ее роли и отрицательного воздействия. Это с одной стороны.

С другой оно, как прямо, созданием и применением ядерного оружия или выбросом радиации в результате аварий, так и косвенно, накоплением радиоактивных элементов в веществе и организмах, направлено на уничтожение человечества.

И вопрос уже не в том: «Зачем человеку это надо?». А в том, является ли человек разумным, как утверждает сам и академик В.И. Вернадский.

Источник: ecology-of.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.