История развития планеты земля


История развития планеты земля

История нашей планеты еще хранит в себе немало загадок. Ученые разных областей естествознания вложили свою лепту в изучение развития жизни на Земле.

Считается, что возраст нашей планеты составляет около 4,54 миллиарда лет. Весь этот временной промежуток принято делить на два основных этапа: фанерозой и докембрий. Эти этапы называются эонами или эонотемой. Эоны в свою очередь делятся на несколько периодов, каждый из которых отличается совокупностью изменений, происходивших в геологическом, биологическом, атмосферном состоянии планеты.

История развития планеты земля

  1. Докембрий, или криптозой — это эон (временной промежуток развития Земли), охватывающий около 3,8 миллиардов лет. То есть, докембрий — это развитие планеты от момента образования, формирования земной коры, протоокеана и возникновения жизни на Земле. К концу докембрия на планете уже были широко распространены высокоорганизованные организмы с развитым скелетом.

Эон включает в себя еще две эонотемы — катархей и архей. Последний, в свою очередь, включает в себя 4 эры.

История развития планеты земля

1. Катархей — это время образования Земли, но не было еще ни ядра, ни земной коры. Планета была еще холодным космическим телом. Ученые предполагают, что в этот период на Земле уже была вода. Катархей длился около 600 млн. лет.

2. Архей охватывает период в 1,5 млрд лет. В этот период на Земле еще не было кислорода, происходило формирование залежей серы, железа, графита, никеля. Гидросфера и атмосфера представляли собой единую парогазовую оболочку, которая плотным облаком окутывала земной шар. Солнечные лучи сквозь эту завесу практически не проникали, поэтому на планете царил мрак.2.1         2.1. Эоархей — это первая геологическая эра, которая длилась около 400 млн.лет. Важнейшее событие эоархея — формирование гидросферы. Но воды было еще мало, водоемы существовали отдельно друг от друга и пока не сливались в мировой океан. В это же время земная кора становится твердой, хотя астероиды еще бомбят Землю. На исходе эоархея образуется первый в истории планеты суперконтинент — Ваальбара. 


2.2 Палеоархей — следующая эра, которая также длилась приблизительно 400 млн.лет. В этот период формируется ядро Земли, возрастает напряженность магнитного поля. Сутки на планете длились всего 15 часов. Зато повышается содержание кислорода в атмосфере за счет деятельности появившихся бактерий. Остатки этих первых форм палеоархейской эры жизни были найдены в Западной Австралии. 

2.3 Мезоархей также длился около 400 млн.лет. В мезоархейскую эру нашу планету покрывал неглубокий океан. Участки суши представляли собой небольшие вулканические острова. Но уже в этот период начинается формирование литосферы и запускается механизм тектоники плит. В конце мезоархея наблюдается первый ледниковый период, во время которого на Земле впервые образуются снег и лед. Биологические виды по-прежнему пока представлены бактериями и микробными формами жизни. 

2.4 Неоархей — завершающая эра архейского эона, длительность которой составляет около 300 млн. лет. Колонии бактерий в это время формирует первые на Земле строматолиты (известняковые отложения). Важнейшее событие неоархея – образование кислородного фотосинтеза. 

История развития планеты земля

II. Протерозой — один из длиннейших временных отрезков истории Земли, который принято делить на три эры. Во время протерозоя впервые появляется озоновый слой, мировой океан достигает практически современного объема. А после длительнейшего гуронского оледенения на Земле появляются первые многоклеточные формы жизни – грибы и губки. Протерозой принято делить на три эры, каждая их которых содержала по несколько периодов.


3.1 Палео-протерозой — первая эра протерозоя, которая началась 2,5 млрд. лет назад. В это время полностью формируется литосфера. А вот прежние формы жизни вследствие увеличения содержания кислорода практически вымерли. Этот период получил название кислородной катастрофы. К концу эры на Земле появляются первые эукариоты.

3.2 Мезо-протерозой длился приблизительно 600 млн.лет. Важнейшие события этой эры: формирование континентальных масс, образование суперконтинента Родиния и эволюция полового размножения.

3.3 Нео-протерозой. Во время этой эры Родиния распадается примерно на 8 частей, суперокеан Мировия прекращает свое существование, а на исходе эры Земля практически до экватора покрывается льдами. В неопротерозойскую эру живые организмы впервые начинают приобретать твердую оболочку, что в дальнейшем послужит основой скелета.

История развития планеты земля
III. Палеозой — первая эра фанерозойского эона, начавшаяся приблизительно 541 млн. лет назад и длившаяся около 289 млн. лет. Это эпоха появления древней жизни. Суперконтинент Гондвана объединяет южные материки, чуть позже к нему присоединяются остальные части суши и появляется Пангея. Начинают формироваться климатические пояса, а флора и фауна представлена, в основном, морскими видами. Только к концу палеозоя начинается освоение суши, и появляются первые позвоночные.


Палеозойскую эру условно делят на 6 периодов.

1. Кембрийский период длился 56 млн. лет. В этот период формируются основные горные породы, у живых организмов появляется минеральный скелет. А важнейшим событием кембрия является возникновение первых членистоногих.

2. Ордовикский период — второй период палеозоя, длившийся 42 млн. лет. Это эпоха образования осадочных пород, фосфоритов и горючих сланцев. Органический мир ордовика представлен морскими беспозвоночными и сине-зелеными водорослями.

3. Силурийский период охватывает следующие 24 млн. лет. В это время вымирают практически 60% живых организмов, существовавших прежде. Зато появляются первые в истории  планеты хрящекостные и костные рыбы. На суше силур знаменуется возникновением сосудистых растений. Суперконтинеты сближаются и образуют Лавразию. К концу периода отмечено таяние льдов, уровень моря повысился, а климат стал мягче.

История развития планеты земля
4.


вонский период
отличается бурным развитием разнообразных форм жизни и освоением новых экологических ниш. Девон охватывает временной промежуток в 60 млн. лет. Появляются первые наземные позвоночные, пауки, насекомые. У животных суши формируются легкие. Хотя, по-прежнему, преобладают рыбы. Царство флоры этого периода представлено пропапоротниками, хвощевидными, плаунами и госеменными.

5. Каменноугольный период часто называют карбоном. В это время Лавразия сталкивается с Гондваной и появляется новый суперконтинент Пангея. Образовывается и новый океан — Тетис. Это время появления первых земноводных и рептилий.

История развития планеты земля
6. Пермский период — последний период палеозоя, завершившийся 252 млн. лет назад. Предполагают, что в это время на Землю упал крупный астероид, что привело к значительному изменению климата и вымиранию практически 90% всех живых организмов. Большая часть суши покрывается песками, появляются самые обширные пустыни, которые только существовали за всю историю развития Земли.

История развития планеты земля
IV. Мезозой — вторая эра фанерозойского эона, продолжавшаяся почти 186 млн.лет. В это время материки приобретают практически современные очертания. А теплый климат способствует бурному развитию жизни на Земле. Исчезают гигантские папоротники, а им на смену появляются покрытосеменные растения. Мезозой – это эпоха динозавров и появления первых млекопитающих.


В мезозойской эре выделяют три периода: триас, юра и мел.

1. Триасовый период длился чуть более 50 млн. лет. В это время Пангея начинает раскалываться, а внутренние моря постепенно мельчают и высыхают. Климат – мягкий, зоны выражены не ярко. Почти половина растений суши исчезает, так как распространяются пустыни. А в царстве фауны появляются первые теплокровные и сухопутные рептилии, ставшие предками динозавров и птиц.

История развития планеты земля
2. Юрский период охватывает промежуток в 56 млн. лет. На Земле царил влажный и теплый климат. Суша покрывается зарослями папоротников, сосен, пальм, кипарисов. На планете царят динозавры, а многочисленные млекопитающие отличались пока маленьким ростом и густой шерстью.

История развития планеты земля
3. Меловой период — наиболее продолжительный период мезозоя, длившийся почти 79 млн. лет. Практически заканчивается раскол континентов, Атлантический океан значительно увеличивается в объеме, на полюсах формируются ледяные покровы. Увеличение водной массы океанов приводит к образованию парникового эффекта. В конце мелового периода происходит катастрофа, причины которой до сих пор не ясны. В результате вымерли все динозавры и большинство видов рептилий и голосеменных растений.


История развития планеты земля
V. Кайнозой — это эра животных и человека разумного, начавшаяся 66 млн. лет назад. Континенты в это время приобрели свое современное очертание, Антарктида заняла южный полюс Земли, а океаны продолжали увеличиваться. Уцелевшие после катастрофы мелового периода растения и животные оказались в совершенно новом мире. На каждом континенте начали формироваться уникальные сообщества форм жизни.

Кайнозойскую эру делят на три периода: палеоген, неоген и четвертичный.

История развития планеты земля
1. Палеогеновый период закончился приблизительно 23 млн. лет назад. В это время на Земле царил тропический климат, Европа скрывалась под вечнозелеными тропическими лесами, лишь на севере континентов росли листопадные деревья. Именно в период палеогена происходит бурное развитие млекопитающих.

История развития планеты земля
2. Неогеновый период охватывает следующие 20 млн. лет развития планеты. Появляются киты и рукокрылые. И, хотя по земле еще бродят саблезубые тигры и мастодонты, фауна все больше приобретает современные черты.


История развития планеты земля
3. Четвертичный период начался более 2,5 млн. лет назад и продолжается до сих пор. Два важнейших события характеризуют этот временной отрезок: ледниковый период и появление человека. Ледниковая эпоха полностью завершила формирование климата, флоры и фауны континентов. А появление человека ознаменовало начало цивилизации.

Источник: xn—-8sbiecm6bhdx8i.xn--p1ai

Этапы развития Земли

Вся история Земли делится на два огромных по времени этапа. Первый этап характеризуется отсутствием сложных живых организмов. Существовали лишь одноклеточные бактерии, обосновавшиеся на нашей планете примерно 3,5 млрд. лет назад. Второй этап начался примерно 540 млн. лет назад. Это время, когда живые многоклеточные организмы расселились по Земле. Здесь имеются в виду и растения, и животные. Причём средой их обитания стали и моря, и суша. Второй период продолжается по сей день, а его венцом является человек.


Такие огромные временные этапы называют эонами. Каждому эону присуща своя эонотема. Последняя представляет собой определённый этап геологического развития планеты, который кардинально отличается от других этапов литосферой, гидросферой, атмосферой, биосферой. То есть каждая эонотема строго специфична и не похожа на другие.

Всего насчитывается 4 эона. Каждый из них, в свою очередь, подразделяется на эры Земли, а те делятся на периоды. Отсюда видно, что существует жёсткая градация больших интервалов времени, а за основу берётся геологическое развитие планеты.

Катархей

Самый древний эон называется катархей. Начался он 4,6 млрд. лет назад, а закончился 4 млрд. лет назад. Таким образом, его длительность составила 600 млн. лет. Время очень древнее, поэтому его не разделили ни на эры, ни на периоды. Во времена катархея не было ни земной коры, ни ядра. Планета представляла собой холодное космическое тело. Температура в его недрах соответствовала температуре плавления вещества. Сверху поверхность была покрыта реголитом, как в наше время лунная. Рельеф был практически ровным из-за постоянных мощных землетрясений. Никакой атмосферы и кислорода, естественно, не было.

Архей

Второй эон называется архей. Начался он 4 млрд. лет назад, а закончился 2,5 млрд. лет назад. Таким образом, он продолжался 1,5 млрд. лет. Его подразделяют на 4 эры: эоархей, палеоархей, мезоархей и неоархей.


Эоархей (4–3,6 млрд. лет) длился 400 млн. лет. Это период формирования земной коры. На планету падало огромное количество метеоритов. Это, так называемая, Поздняя тяжёлая бомбардировка. Именно в то время началось образование гидросферы. На Земле появилась вода. В большом количестве её могли занести кометы. Но до океанов было ещё далеко. Существовали отдельные водоёмы, а температура в них доходила до 90° по Цельсию. Атмосфера характеризовалась высоким содержанием углекислого газа и небольшим содержанием азота. Кислород отсутствовал. В конце эры начал формироваться первый суперконтинент Ваальбара.

Палеоархей (3,6–3,2 млрд. лет) длился 400 млн. лет. В эту эру завершилось формирование твёрдого ядра Земли. Появилось сильное магнитное поле. Его напряжённость составляла половину нынешней. Следовательно, поверхность планеты получила защиту от солнечного ветра. На этот период приходятся и примитивные формы жизни в виде бактерий. Их остатки, возраст которых составляет 3,46 млрд. лет, были обнаружены в Австралии. Соответственно, стало увеличиваться содержание кислорода в атмосфере, обусловленное деятельностью живых организмов. Продолжалось формирование Ваальбара.

Мезоархей (3,2–2,8 млрд. лет) длился 400 млн. лет. Самым примечательным в нём являлось существование цианобактерий. Они способны к фотосинтезу и выделяют кислород. Завершилось формирование суперконтинента. К концу эры он раскололся. Имело место также падение огромного астероида. Кратер от него до сих пор существует на территории Гренландии.

Неоархей (2,8–2,5 млрд. лет) продолжался 300 млн. лет. Это время формирования настоящей земной коры – тектогенез. Продолжали развиваться бактерии. Следы их жизни обнаружены в строматолитах, возраст которых оценивается в 2,7 млрд. лет. Эти известковые отложения были образованы огромными колониями бактерий. Их нашли в Австралии и Южной Африке. Продолжал совершенствоваться фотосинтез.

С окончанием архея эры Земли получили своё продолжение в протерозойском эоне. Это период 2,5 млрд. лет – 540 млн. лет назад. Он самый длительный из всех эонов планеты.

Протерозой делится на 3 эры. Первая называется палеопротерозой (2,5–1,6 млрд. лет). Продолжалась она 900 млн. лет. Этот огромный временной интервал подразделяется на 4 периода: сидерий (2,5–2,3 млрд. лет), риасий (2,3–2,05 млрд. лет), орозирий (2,05–1,8 млрд. лет), статерий (1,8–1,6 млрд. лет).

Сидерий примечателен в первую очередь кислородной катастрофой. Произошла она 2,4 млрд. лет назад. Характеризуется кардинальным изменением атмосферы Земли. В ней в огромном количестве появился свободный кислород. До этого в атмосфере доминировали углекислый газ, сероводород, метан и аммиак. Но в результате фотосинтеза и угасания вулканической активности на дне океанов, кислород заполонил всю атмосферу.

Кислородный фотосинтез характерен для цианобактерий, которые расплодились на Земле 2,7 млрд. лет назад. До этого господствовали архебактерии. Они при фотосинтезе кислород не вырабатывали. К тому же вначале кислород расходовался на окисление горных пород. В больших количествах он скапливался только в биоценозах или бактериальных матах.

В конце концов, наступил момент, когда поверхность планеты оказалась окисленной. А цианобактерии продолжали выделять кислород. И он начал накапливаться в атмосфере. Процесс ускорился из-за того, что океаны тоже перестали поглощать этот газ.

Как результат, анаэробные организмы погибли, а им на смену пришли аэробные, то есть те, у которых синтез энергии осуществлялся посредством свободного молекулярного кислорода. Планету окутал озоновый слой и снизился парниковый эффект. Соответственно, расширились границы биосферы, а осадочные и метаморфические породы оказались полностью окисленными.

Все эти метаморфозы привели к Гуронскому оледенению, которое продолжалось 300 млн. лет. Началось оно в сидерии, а закончилось в конце риасия 2 млрд. лет назад. Следующий период орозирий примечателен интенсивными процессами горообразования. В это время на планету упало 2 огромных астероида. Кратер от одного называется Вредефорт и находится в ЮАР. Его диаметр доходит до 300 км. Второй кратер Садбери располагается в Канаде. Его диаметр составляет 250 км.

Последний статерийский период примечателен образованием суперконтинента Колумбия. В него вошли почти все континентальные блоки планеты. Существовал суперконтинент 1,8-1,5 млрд. лет назад. В это же время сформировались клетки, которые содержали ядра. То есть клетки эукариоты. Это был очень важный этап эволюции.

Вторая эра протерозоя называется мезопротерозой (1,6–1 млрд. лет). Её продолжительность составила 600 млн. лет. Делится она на 3 периода: калимий (1,6–1,4 млрд. лет), экзатий (1,4–1,2 млрд. лет), стений (1,2–1 млрд. лет).

Во времена калимия распался суперконтинент Колумбия. А во времена экзатия появились красные многоклеточные водоросли. На это указывает ископаемая находка на канадском острове Сомерсет. Её возраст составляет 1,2 млрд. лет. В стений образовался новый суперконтинент Родиния. Возник он 1,1 млрд. лет назад, а распался 750 млн. лет назад. Таким образом, к концу мезопротерозоя на Земле существовал 1 суперконтинент и 1 океан, получивший название Мировия.

Последняя эра протерозоя носит название неопротерозой (1 млрд.–540 млн. лет). В неё входит 3 периода: тоний (1 млрд.–850 млн. лет), криогений (850–635 млн. лет), эдиакарий (635–540 млн. лет).

Во времена тония начался распад суперконтинента Родиния. Этот процесс закончился в криогении, и начал формироваться суперконтинент Паннотия из 8 образовавшихся отдельных кусков суши. Для криогения также характерно полное оледенение планеты (Земля-снежок). Льды дошли до экватора, а после того, как они отступили, резко ускорился процесс эволюции многоклеточных организмов. Последний период неопротерозоя эдиакарий примечателен появлением мягкотелых существ. Эти многоклеточные животные получили название вендобионты. Представляли они собой ветвящиеся трубчатые структуры. Данная экосистема считается древнейшей.

Фанерозой

Примерно 540 млн. лет назад началось время 4-го и последнего эона – фанерозоя. Здесь насчитываются 3 очень важные эры Земли. Первая называется палеозой (540–252 млн. лет). Продолжалась она 288 млн. лет. Делится на 6 периодов: кембрий (540–480 млн. лет), ордовик (485–443 млн. лет), силур (443–419 млн. лет), девон (419–350 млн. лет), карбон (359–299 млн. лет) и пермь (299–252 млн. лет).

Кембрий считается временем жизни трилобитов. Это морские животные, похожие на ракообразных. Вмести с ними в морях обитали медузы, губки и черви. Такое обилие живых существ называется кембрийским взрывом. То есть до этого ничего подобного не было и вдруг резко появилось. Скорее всего, именно в кембрии начали зарождаться минеральные скелеты. Раньше же живой мир имел мягкие тела. Они, естественно, не сохранились. Поэтому сложные многоклеточные организмы более древних эпох и невозможно обнаружить.

Палеозой примечателен быстрым расселением организмов с твёрдыми скелетами. Из позвоночных появились рыбы, пресмыкающиеся и земноводные. В растительном мире вначале преобладали водоросли. Во время силура растения начали осваивать сушу. В начале девона болотистые берега поросли примитивными представителями флоры. Это были псилофиты и птеридофиты. Размножались растения спорами, которые переносил ветер. Побеги растений развивались на клубневых или стелющихся корневищах.

Растения на суше

Растения начали осваивать сушу в силурский период

Появились скорпионы, пауки. Настоящим гигантом была стрекоза меганевра. Размах её крыльев достигал 75 см. Древнейшими костными рыбами считаются акантоды. Жили они в силурский период. Их тела были покрыты плотными ромбовидными чешуйками. В карбон, который ещё называют каменноугольным периодом, на берегах лагун и в бесчисленных топях бурно развивалась самая разнообразная растительность. Именно её остатки и послужили основой для образования каменного угля.

Это время также характерно началом образования суперконтинента Пангея. Полностью он сформировался в пермский период. А распался 200 млн. лет назад на 2 континента. Это северный континент Лавразия и южный континент Гондвана. Впоследствии Лавразия раскололась, и образовались Евразия и Северная Америка. А из Гондваны возникли Южная Америка, Африка, Австралия и Антарктида.

На пермь приходились частые изменения климата. Засушливые времена сменялись влажными. В это время на берегах появлялась буйная растительность. Типовыми растениями были кордаиты, каламиты, древовидные и семенные папоротники. В воде появились ящеры мезозавры. Их длина достигала 70 см. Но к концу пермского периода ранние пресмыкающиеся вымерли и уступили место более развитым позвоночным. Таким образом, в палеозой жизнь надёжно и плотно обосновалась на голубой планете.

Особый интерес у учёных вызывают следующие эры Земли. 252 млн. лет назад наступил мезозой. Продолжался он 186 млн. лет и закончился 66 млн. лет назад. Состоял из 3-х периодов: триас (252–201 млн. лет), юра (201–145 млн. лет), мел (145–66 млн. лет).

Граница между пермским и триасовым периодом характеризуется массовым вымиранием животных. Погибли 96% морских видов и 70% наземных позвоночных. По биосфере был нанесён очень сильный удар, и восстанавливалась она очень долго. А закончилось всё появлением динозавров, птерозавров и ихтиозавров. Эти морские и наземные животные были огромных размеров.

А вот основное тектоническое событие тех лет – распад Пангеи. Единый суперконтинент, как уже говорилось, разделился на 2 континента, а затем распался на те материки, которые мы знаем сейчас. Откололся и индийский субконтинент. Впоследствии он соединился с азиатской плитой, но столкновение было настолько жёсткое, что возникли Гималаи.

Деревья в меловой период

Такой природа была в ранний меловой период

Мезозой примечателен тем, что считается самым тёплым периодом фанерозойского эона. Это время глобального потепления. Началось оно в триасе, а закончилось в конце мела. 180 млн. лет даже в Заполярье не было устойчивых паковых ледников. Тепло по планете распространялось равномерно. На экваторе среднегодовая температура соответствовала 25-30° по Цельсию. Для приполярных областей был характерен умеренно-прохладный климат. В первой половине мезозоя климат был сухим, а для второй половины характерен влажный. Именно в это время сформировался экваториальный климатический пояс.

В животном мире из подкласса пресмыкающихся возникли млекопитающие. Связано это было с совершенствованием нервной системы и головного мозга. Конечности переместились с боков под тело, стали более совершенными детородные органы. Они обеспечили развитие зародыша в теле матери с последующим выкармливанием его молоком. Появился шерстяной покров, улучшились кровообращение и обмен веществ. Первые млекопитающие появились ещё в триасе, но с динозаврами они конкурировать не могли. Поэтому более 100 млн. лет те занимали доминирующее положение в экосистеме.

Последней эрой считается кайнозой (начало 66 млн. лет назад). Это текущий геологический период. То есть мы все живём в кайнозое. Подразделяется он на 3 периода: палеоген (66–23 млн. лет), неоген (23–2,6 млн. лет) и современный антропоген или четвертичный период, начавшийся 2,6 млн. лет назад.

В кайнозое наблюдаются 2 главных события. Массовое вымирание динозавров 65 млн. лет назад и общее похолодание на планете. Гибель животных связывают с падением огромного астероида с высоким содержанием иридия. Диаметр космического тела достигал 10 км. В результате этого образовался кратер Чиксулуб с диаметром 180 км. Находится он на полуострове Юкатан в Центральной Америке.

Безжизненная поверхность Земли

Поверхность Земли 65 млн. лет назад

После падения произошёл взрыв огромной силы. В атмосферу поднялась пыль и закрыла планету от солнечных лучей. Средняя температура упала на 15°. Пыль висела в воздухе целый год, что привело к резкому похолоданию. А так как Землю населяли крупные теплолюбивые животные, то они вымерли. Остались только мелкие представители фауны. Именно они и стали предками современного животного мира. Данная теория базируется на иридии. Возраст его слоя в геологических отложениях как раз соответствует 65 млн. лет.

Во времена кайнозоя материки расходились. На каждом из них формировалась своя уникальная флора и фауна. Многообразие морских, летающих и наземных животных значительно увеличилось по-сравнению с палеозоем. Они стали гораздо более совершенными, а доминирующее положение на планете заняли млекопитающие. В растительном мире появились высшие покрытосеменные растения. Это наличие цветка и семяпочки. Появились также злаковые культуры.

Самым важным в последней эре является антропоген или четвертичный период, начавшийся 2,6 млн. лет назад. Состоит он из 2-х эпох: плейстоцена (2,6 млн. лет–11,7 тыс. лет) и голоцена (11,7 тыс. лет–наше время). В эпоху плейстоцена на Земле жили мамонты, пещерные львы и медведи, сумчатые львы, саблезубые кошки и многие другие виды животных, вымерших в конце эпохи. 300 тыс. лет назад на голубой планете появился человек. Считается, что первые кроманьонцы облюбовали для себя восточные районы Африки. В это же время на Пиренейском полуострове жили неандертальцы.

Примечателен плейстоцен и ледниковыми периодами. Целых 2 млн. лет на Земле чередовались очень холодные и тёплые периоды времени. За последние 800 тыс. лет насчитывалось 8 ледниковых периодов со средней продолжительностью 40 тыс. лет. В холодные времена ледники наступали на континенты, а в межледниковье отступали. При этом повышался уровень Мирового океана. Около 12 тыс. лет назад, уже в голоцен, закончился очередной ледниковый период. Климат стал тёплым и влажным. Благодаря этому, человечество расселилось по всей планете.

Голоцен – это межледниковье. Оно продолжается уже 12 тыс. лет. Последние 7 тыс. лет развивалась человеческая цивилизация. Мир во многом изменился. Значительные трансформации, благодаря деятельности людей, претерпели флора и фауна. В наши дни многие виды животных находятся на грани уничтожения. Человек уже давно считает себя властелином мира, но эры Земли никуда не делись. Время продолжает свой неуклонный ход, а голубая планета добросовестно вращается вокруг Солнца. Одним словом, жизнь продолжается, а вот что б

Источник: izverzhenie-vulkana.ru

Статья предоставлена телеграм каналом "С другого угла".

5 миллиардов лет назад нашей планеты не существовало. На том месте, где сейчас находится Земля, на краю Млечного пути, существовало лишь облако из газа и пыли.

Что же привело к тому, что облако пыли превратилось в планету на которой образовалась жизнь?

Всё началось с огромного облака пыли, состоящего из газа, песка и кремния. Такие области пыли и газа называют молекулярными облаками. Молекулярные облака обладают огромной протяженностью в сотни световых лет.

Земля возникла из облака, похожего на эти, снятые телескопом Хаббл.

Эти облака состоят из осколков сотен погибших звезд. Такие облака медленно вращаются. По мере уплотнения, скорость вращения увеличивается. Из-за сил притяжения материя постепенно сосредотачивается к центру, тем самым центр начинает нагреваться.

Вращающийся таким образом огненный шар и стал нашим Солнцем. Оставшийся газ вращался настолько быстро, что превратился в разросшиеся диски из пыли и газа. Эта материя и сформирует Землю и остальные планеты.

Как известно, мелкие частицы в невесомости имеют свойство быстро сбиваться в комки. Также происходит в молекулярных облаках, и наша Земля, как и другие планеты, начались с маленького комочка. Когда сгусток частиц достиг 800 метров в диаметре, то его массы стало достаточно, чтобы притягивать частицы с соседних дисков. Подобно огромным магнитам эти сгустки, вращаясь вокруг Солнца, забирали на себя всю пыль, пока она вся не стала частью планет. Эти сгустки образовали около 20 планет и этот процесс занял примерно 3 млн лет.

Следующий этап эволюции Земли оказался весьма бурным. Во время вращения планет вокруг Солнца их гравитационные поля начали взаимодействовать и планеты начали сталкиваться. При каждом столкновении две планеты сливались в одну. Примерно через 30 миллионов лет таких столкновений наша Солнечная система приобрела примерно такой вид, какой она имеет и сейчас.

Но как же выглядела наша планета на ранних этапах своего развития? Энергия от столкновения с другими планетами невероятно нагрела Землю. Поверхность Земли была нагрета до 4700 градусов Цельсия.

Земля на ранних этапах развития.

При таких температурах плавились даже скалы. Во время этого процесса лёгкие элементы поднимались на поверхность, а тяжелые, такие как железо, спускались к центру планеты, тем самым образовывая ядро земли, которое сейчас состоит в основном из железо-никелевого сплава. Земное ядро, из-за вращения, является огромным магнитом и образует магнитный щит вокруг нашей планеты. Этот щит защищает нас от смертоносной солнечной радиации. Именно это и сыграло одну из ключевых ролей в появлении жизни.

Спустя 50 млн лет с рождения Земли в нашу планету врезалась другая планета, размером в половину Земли. Этот удар высвободил такое огромное количество энергии, что наша планета превратилась расплавленный шар. Планета, явившаяся инициатором столкновения, превратилась в околоземный мусор, который со временем, под действием сил притяжения, и стал постоянным спутником — Луной. Также этот удар способствовал смещению земной орбиты, что стало причиной возникновения времен года.

Как известно, жизнь на нашей планете зародилась в воде. Но откуда взялась вода на Земле? В молодой Солнечной системе на Земле было слишком жарко, чтобы там образовалась вода. В действительности воду принесли метеориты из внешней части пояса астероидов.

Некоторые метеориты содержат в своём составе лёд. Когда метеорит проходит земную атмосферу, то он нагревается только снаружи и поэтому у него есть все шансы донести замерзшую воду до поверхности планеты.

Но что же заставило такое множество метеоритов доставить на нашу планету воду в таком огромном количестве? Всему виной Юпитер. Из-за своих размеров и из-за близости к поясу астероидов Юпитер может изменять траекторию этих самых астероидов. Так однажды и произошло в далёком прошлом. В результате этого Земля подверглась бомбардировке. Врезаясь в поверхность планеты астероиды разлетались на части и высвобождали воду. Так и возникли океаны на Земле. Впоследствии данные условия стали достаточными для возникновения жизни. Кстати, о возникновении жизни у нас есть отдельная статья.

У нас теперь есть и web версия нашего канала телеграм, где можно делиться публикациями в своих соц. сетях.
Ссылка на сайт: http://different_angle.tggram.com/
Яндекс.Дзен: https://zen.yandex.ru/media/id/5a7df370e86a9e6bc2c0c713

Канал не позиционирует себя как источник стопроцентно правдивой информации, а лишь претендует быть таковым.

Предложить свою статью, замечание или просто написать автору: @different_angle_bot

Источник: zen.yandex.ru

Земля — уникальное место, более пригодной планеты для жизни так и не нашли за 50 лет исследований бескрайних просторов Вселенной. Но так было не всегда, в начале своего пути наша планета больше была похожа на ад в привычном понимании этого слова. Тогда здесь не было ничего кроме затвердевших черных вулканических пород, плавающих на раскаленной до красна первичной поверхности, клубов пара и камней, вырывающихся на поверхность из жерл первых вулканов, и атмосферы, насквозь пропитанной ядовитыми испарениями.

История Земли берет свое начало приблизительно 4,54 млрд. лет назад, — тогда началось формирование Солнечной системы. Как происходил этот процесс и какие силы управляли им достоверно неизвестно, по общепринятой теории крупное скопление межзвездного газа и пыли начало сокращаться и сближаться в результате мощной ударной волны от взрыва сверхновой звезды неподалеку (возможно причина была и другой). Скорость вращения газового облака начала расти, под воздействием сил гравитации, инерции и углового момента оно было сплюснуто в относительно плоский протопланетный диск. Царил хаос, мелкие пылинки сталкивались друг с другом, далее образуя все более крупные центры скоплений космического мусора или планетарных строительных блоков, кому, что ближе по душе. Все это вращалось вокруг центра, столкновения продолжались, а их масштабы росли. В результате образовались протопланеты.

протопланетный диск

Такой вид имела Солнечная система на стадии формирования больше 4,5 млрд лет назад.

В центре туманности было сосредоточено около 98% массы. Вещество там не имело большого углового момента и поэтому сжалось и нагрелось сильнее, чем на окраинах газового скопления. Сокращение продолжалось, в самом центре температуры достигли невероятных высот — начался термоядерный синтез и в полную силу запылала первая и единственная звезда в нашей системе — Солнце.

Во внешней части пыле-газовой туманности в игру вступает гравитация, протопланеты и более мелкие скопления уже достаточно тяжелы, чтобы поддаться воздействию силы притяжения. Начинается процесс конденсации вещества вокруг первичных планет и разделения протопланетного диска на кольца. В результате явления известного как аккреция, протопланеты двигаясь по намеченным траекториям, собирали более мелкие обломки, остатки пыли и газа и разрастались в размерах. Так, примерно 4,54 млрд лет назад появилась Земля и другие планеты.

протоземля

Прото-Земля в представлении художника. Планета находилась под постоянной бомбардировкой, поверхность была расплавлена, температура достигала невероятных высот.

С момента начала сокращения газо-пылевого скопления и до образования Солнца и планет ушло приблизительно 10-20 млн лет — миг в космических масштабах.

Молодое Солнце светило не так ярко и грело не так сильно, как сейчас. Но тем не менее на молодой Земле было жарко как в преисподней. Энергия непрекращающихся столкновений разогревала планету до такого состояния, что даже камни и железо на ее поверхности находились в расплавленном виде. Безудержно извергались вулканы, их выбросы наполняли первичную атмосферу содержанием.

Кометы, астероиды и другие тела из дальних рубежей Солнечной системы приносят воду на Землю. Но ее пока слишком мало для образования океанов, вода мало-помалу накапливается в литосфере и лишь совсем незначительные доли попадают в атмосферу. Планета понемногу остывает, несмотря на то, что с завидной регулярностью в молодую Терру врезается большое количество относительно мелких небесных тел (от нескольких метров до 100 км в поперечнике) ситуация стабилизируется.

Спустя 30 миллионов лет после окончательного формирования Земли происходит событие действительно грандиозного масштаба — столкновение с Тейей. Тейя — каменная планета размером с Марс, судьба которой была закончена, так и не успев начаться. В результате столкновения выделилось феноменальное количество энергии, Земля вновь нагрелась, вся ее поверхность расплавилась, а на околоземную орбиту был выброшен большой сгусток раскаленной материи. Остыв, этот сгусток стал верным спутником — Луной, — с тех самых пор Земля уже никогда не держала свой путь одна. Еще одним архиважным положительном моментом было то, что Тейя могла принести с собой огромные запасы воды из более холодных участков Солнечной системы.

столкновение с планетой Тейя

Самое крупное столкновение в истории Земли — столкновение с планетой Тейя. Оно одновременно стало и одним из самых важных событий на пути к появлению жизни, т.к. во-первых Тейя принесла большие запасы воды, а во-вторых в результате этой катастрофы появилась Луна.

После рождения Луны наша планета начала медленно остывать. Из остывающих пород все активнее выделялись пары и газы: воды, углекислоты, азота, водорода… Пар конденсировался в атмосфере и однажды упал с небес уже в виде жидкой воды, наполняя впадины и неровности в земной коре. Однако, еще 700 миллионов лет ситуация, мягко говоря, нестабильной — продолжался процесс поздней тяжелой бомбардировки. Особо крупные космические обломки, попадая в Землю испаряли всю жидкую воду на поверхности. Охлаждение и конденсация начинались вновь. Все повторялось по кругу.

3,8 млрд лет назад период бомбардировки закончился. Температура стабилизировалась, большую часть поверхности планеты покрывала жидкая вода. Чуть позже в океанах появились первые сложные органические молекулы — первые формы жизни. Они были способны воспроизводить самих себя, т.е. продолжать род. Начался процесс эволюции. Еще через 300 млн лет из простых молекул появились одноклеточные сине-зеленые водоросли, кардинально изменившие Землю. Водоросли быстро размножались и вскоре заполонили все верхние, прогреваемые лучами Солнцам, слои воды. Поглощая солнечную энергию для выработки питательных веществ, они вырабатывали один побочный продукт — кислород. Через какое-то время уровень кислорода в атмосфере достиг отметки, достаточной для дыхания. Это сделало настоящий толчок для развития самых разнообразных форм жизни, а так же вывело ее на сушу.

история Земли

Зеленые разводы на поверхности воды — это сине-зеленые водоросли. Именно им мы обязаны за наличие кислорода в атмосфере Земли.

Земля сформировалась 4,5 миллиарда лет назад, но отголоски того тяжелого пылающего прошлого слышны и сейчас. Процессы, некогда превратившие раскаленный каменный шар в пригодный для жизни мир протекают и сегодня. Каждое извержение вулкана выбрасывает в атмосферу точно такие же газы, как и в глубокой древности. Практически во всех уголках планеты растения продолжают вырабатывать кислород и насыщать им воздух, которым мы дышим. И каждый зеленый росток, проросший там, где еще недавно текла лава, гласит о победе, о победе жизни над мертвым камнем.

история Земли

Росток, укоренившийся на недавно остывшей лаве. Гавайские острова.

Источник: wildwildworld.net.ua

Рождение Земли и ее структура (4,6 млрд лет назад)

Туманность, из которой появилась Земля, представляла собой обломки звезд более ранних поколений. Она состояла из микроскопических частиц льда, железа и других веществ, собранных в более охлажденных слоях звезд и выброшенных в космос. Силы притяжения сталкивали эти частицы газового диска и склеивали их между собой. Такое явление называется аккрецией.

История нашей планеты записана в горных породах, но даже самые древние из них насчитывают только 3,7 млрд лет, поэтому о более ранних событиях земной эволюции можно судить лишь на основании косвенных данных и построенных на их основе гипотез.

На следующем этапе формирования планеты мелкие частицы соединялись в крупные (размером до километра) — «строительные блоки», называемые планетезималями, которые сталкивались, то разрушаясь, то, наоборот, соединяясь вместе. Таким образом постепенно 5–4,6 млрд лет назад возникло ядро — центр-зародыш будущей планеты Земля.

Наиболее крупные из таких зародышей стали конкурировать между собой за планетезимали, которые оставались свободными. Это происходило на протяжении 1–10 млн лет. Зародыши планет внутренней части Солнечной системы захватывали газовые облака и сливались друг с другом. Процесс образования каждой планеты оказался уникальным, этим и объясняется их разнообразие.

Современная наука считает, что Земля сформировалась за 300–400 млн лет. Этот процесс был достаточно бурным, его сопровождали столкновения с астероидами и падения метеоритов.

Как в гигантской центрифуге, более плотные вещества опускались к центру планеты, в то время как легкие всплывали на поверхность. Эволюция Земли продолжалась и после ее рождения. Два вида энергии: та, которая образовывалась при склеивании частиц, та, что высвобождалась в результате ядерных реакций, разогревали недра юной планеты. В результате этого стало интенсивно формироваться ядро и внутренние оболочки Земли.

Внутренние слои планеты были настолько раскалены, что на глубине всего в несколько десятков километров лежал пласт расплавленных горных пород. С момента формирования Земли вещество и энергия недр, поверхности и атмосферы находились в состоянии постоянного взаимного обмена. Тем самым были созданы условия для зарождения будущей жизни.

Начальный этап жизни юной планеты после ее рождения принято называть догеологическим. Этот период длился 0,9 млрд лет, он пока еще недостаточно изучен и скрывает множество загадок. В то время появлялось множество вулканов, которые выбрасывали газы и водяные пары.

Принято считать, что в догеологический период сформировались важнейшие оболочки, которые современная наука выделяет в структуре Земли, — ядро, мантия и земная кора. Такое расслоение было вызвано мощной метеоритной бомбардировкой планеты и последующим плавлением некоторых ее частей.

Существует две гипотезы того, как появилось земное ядро. Согласно первой изначально однородное вещество, из которого состояла Земля, разделилось на тяжелый центр, куда «стекало» расплавленное железо, и более легкую мантию, состоящую из силикатов. Образование ядра, которое и по сей день остается жидким, происходило по мере того, как капли металла и другие тяжелые химические соединения как бы просачивались к сердцу планеты. Место опускающихся тяжелых соединений занимали более легкие шлаки — они поднимались к поверхности Земли. Из них состоит современная кора планеты и внешняя часть мантии. Это предположение не дает убедительного объяснения тому, как расплавленный железно-никелевый сплав мог «просочиться» более чем на тысячу километров вглубь земного шара и достичь его центра.

Сторонники второй гипотезы считают, что железное ядро Земли — это остатки железных метеоритов, с которыми сталкивалась планета вскоре после своего рождения. Потом их покрыл слой каменных (силикатных) метеоритов, из которого образовалась мантия. Уязвимое место этой гипотезы в том, что для такого хода событий железные и каменные метеориты должны были существовать раздельно и падать на Землю в строгой очередности. В то же время исследования показывают, что те из них, которые имеют железную структуру, могут появиться только в результате разрушения уже сформированной планеты. Таким образом, они не могут быть младше других планет Солнечной системы. Так как обе гипотезы не вполне убедительны, остается признать, что точным знанием о возникновении ядра Земли люди пока не обладают.

Плотное внутреннее ядро Земли очень важно для всего живого. Благодаря ему масса планеты достаточно велика, чтобы удерживать в своем гравитационном поле атмосферные газы, водяные пары, без которых не было бы гидросферы, и другие земные слои. Если бы Земля лишилась своего ядра, то мы остались бы и без воды, и без воздуха.

Как же устроено земное ядро, которое, очевидно, возникло в самом начале жизни планеты? В нем есть внешние и внутренние оболочки. Считается, что внешний слой лежит на глубине в 2900–5100 км от поверхности Земли и по своим физическим свойствам характеризуется почти как жидкость. Он состоит из потоков расплавленного железа и никеля и является прекрасным проводником электрического тока. Именно этому слою мы обязаны существованием магнитного поля нашей планеты, которое создается по законам электромагнитной индукции постоянно движущимся проводником тока.

Промежуток в 1270 км от внешнего слоя до центра земного шара занимает внутреннее ядро, состоящее на 4/5 из железа и на 1/5 из диоксида кремния. Оно обладает очень высокой температурой и большой плотностью. Внешнее ядро связано с земной мантией, тогда как внутреннее существует само по себе. Высокие температуры сочетаются в последнем с огромным давлением (до 3 млн атмосфер), поэтому его вещество остается твердым. Предполагают, что даже легчайший из земных газов — водород — в таких условиях существует в твердой фазе.

Происхождение земного ядра и внутренняя структура нашей планеты продолжают быть научными загадками. Очень многое остается непознанным по сей день. Пока большинство ученых сходятся во мнении, что формирование центральной оболочки началось одновременно с рождением самой Земли.

Ядро покрывает мантия. Ее пластическое (полурасплавленное, нетвердое) вещество заполняет толщу пространства на глубину 2900 км от земной коры к центру планеты. Масса мантии составляет примерно 67% от общей массы планеты. Считается, что этот слой неустойчив за счет своего пластического состояния и находится в постоянном движении. В наиболее глубоких слоях мантии, где давление выше, его состояние переходит в твердое. Внешняя оболочка Земли — кора — имеет толщину от нескольких километров под дном океанов до нескольких десятков километров под материками.

В самом начале истории нашей планеты земная кора была относительно тонкая и представляла собой застывший слой расплавленного базальта. На сегодняшний день в ней различают три слоя: осадочный — у самой поверхности, гранитный и самый глубокий — базальтовый. Первые два хорошо изучены геологами, а вот третий пока никто не видел. На континентах базальтовый слой не выходит на поверхность, а из-за нахождения на большой глубине он недоступен даже для самых современных буровых скважин.

Однако мы все равно знаем о нем кое-что благодаря новейшим сейсмическим методам. Во время землетрясений на глубине 10–700 км возникают волны, которые называют сейсмическими. Как у всякой волны, их скорость тем выше, чем плотнее та среда, в которой они распространяются (например, звуковые волны распространяются в воде в 4,5 раза быстрее, чем в воздухе). Анализируя скорость сейсмических волн, можно судить о плотности вещества на разных уровнях в земной коре.

С помощью такого метода была построена карта глубины нашей планеты и доказано, что скорость сейсмических волн в самом нижнем слое земной коры близка к той, которая развивается в базальтовом. Еще одно косвенное подтверждение существования этого третьего загадочного слоя — повсеместное распространение на Земле базальтовых лав. Современные поля, состоящие из этого вещества, на поверхности планеты — след древних вулканических извержений. По глубоким разломам расплавленный базальт поднимался из земных недр, выплескивался на поверхность и застывал.

Как же возник базальтовый слой земной коры? В самом начале жизни нашей планеты, примерно 4–4,5 млрд лет назад, Земля была сильно раскалена. В верхней части мантии давление было немного ниже, поэтому там был возможен переход части веществ из твердого состояния в жидкое. Образовывалась магма, близкая по составу к базальту. Она медленно двигалась вверх к поверхности Земли. Извергаясь, магма остывала и отвердевала. Так постепенно складывалась кора из базальтов.

Говоря о строении Земли, нам часто придется пользоваться термином «горные породы». Считается, что впервые так назвал разные группы минералов русский ученый Василий Михайлович Севергин в конце XVIII в. В те времена изучение камней было частью горного дела, поэтому использовалось слово «горные», хотя камни, разумеется, существуют не только в горах.

Горные породы делятся на три основных типа: магматические, осадочные и метаморфические. Происхождение первого типа нам уже понятно: эти породы образованы застывшей магмой. Они имеют ярко выраженное кристаллическое строение, при этом чем медленнее остывала вулканическая лава, тем крупнее получались кристаллы. К таким породам относятся, например, граниты и базальты.

Осадочные породы возникают из обломков кристаллических минералов, их так и называют — обломочные (песок, речная галька или мельчайшие частицы, которые образуют глину), а также из останков живых организмов — тогда они называются органическими (это и каменный уголь, и известняк, в котором видны осколки морских ракушек, и, конечно же, нефть). Когда минералы подвергаются глубоким физическим и химическим изменениям (метаморфозам) под действием высоких температур и давления, получаются метаморфические породы.

Метаморфизму могут подвергаться как магматические, так и осадочные породы. К первым относятся многие сланцы, а ко вторым — хорошо известный мрамор, который возник в результате глубоких преобразований известняка.

Одной из самых распространенных в земной коре пород считаются метаморфические гнейсы.

Формирование поверхности древней Земли и возникновение Луны (4,6–4 млрд лет назад)

На начальном этапе формирования Земли (около 4,6–4 млрд лет назад) расслоение внутренней материи земного шара сопровождалось интенсивной метеоритной бомбардировкой поверхности планеты. Метеориты падали на Землю и образовывали кратеры. Огромная энергия ударов, подчиняясь закону ее сохранения, переходила в тепло: холодные (около абсолютного нуля!) метеориты разогревали земную поверхность и недра планеты. Одновременно с метеоритным подогревом шло постоянное извержение огромного количества вулканов. Пары и газы выходили наружу из глубин планеты.

Из раскаленных недр вырывалась расплавленная магма, которая покрывала огромные пространства юной планеты и образовывала базальтовые поля — в то время земная поверхность была похожа на лунную.

Шаг за шагом внутренняя структура Земли приближалась к современной научной модели. Формировались ядро, мантия и кора, которая еще многократно изменялась, прежде чем приняла знакомые нам очертания.

Луна превосходит любой другой спутник в Солнечной системе по соотношению собственного размера к такой же характеристике Земли. В этом заключатся непохожесть Луны на другие планеты-спутники. Ее загадку долго пыталась разгадать современная наука. Наиболее убедительной считается гипотеза, согласно которой Луна появилась после мощного столкновения небесных тел. О подробностях этой космической катастрофы и ее влиянии на историю Земли мы поговорим позже.

Луна не похожа на нашу планету: на ее поверхности нет воды, не существует лунной атмосферы, в ее составе мало железа, а также летучих соединений. Однако соотношение изотопов кислорода у этих планет почти одинаково. Этот важный показатель еще называют кислородной подписью. Такие данные позволяют выдвинуть гипотезу о том, что и Земля, и Луна сформировались из одних и тех же планетезималей («строительных блоков») на одинаковом расстоянии от Солнца.

Присутствием огромного спутника объясняются многие явления на нашей планете. Луна находится по космическим меркам не очень далеко от нас, поэтому ее притяжение хорошо ощущается на Земле. Оно вызывает приливы и отливы не только в океанах, но и в закрытых водоемах земной коры.

Лунное притяжение вызывает волны, которые пробегают по земной поверхности и вытягивают ее примерно на 50 см в сторону планеты-спутника.

Великая космическая катастрофа и метеоритные бомбардировки

Ученые Дональд Дэвис и Уильям Хартманн объясняли появление Луны с помощью гипотезы космической катастрофы. Суть ее в том, что протоземля в некоторый момент столкнулась с другой древней планетой, размер которой был, как у современного Марса. Этой гипотетической планете дали имя Тея — так греки называли мать богов солнца, зари и луны (Гелиоса, Эос и Селены).

Считается, что Тея появилась 4,6 млрд лет назад одновременно с другими планетами Солнечной системы и тоже вращалась по орбите Земли, но притяжение Солнца и Земли сместили ее, и она врезалась в Землю.

Столкновение произошло на небольшой скорости и почти по касательной — планеты не разрушились и только часть вещества Земли и Теи была выброшена в космос. Эти попавшие на околоземную орбиту обломки и дали начало Луне, которая стала двигаться по земной орбите. Земля же после столкновения увеличила скорость своего вращения (цикл «день-ночь») и наклон его оси.

Компьютерное моделирование подтвердило возможность такого хода событий и указало на то, что Луне после столкновения потребовалась сто лет — лишь миг по космическим меркам, — чтобы стать шаром. Низкое содержание железа в составе спутника нашей планеты объясняется тем, что столкновение произошло уже после формирования земного ядра, которое вобрало в себя большую часть земного железа.

Обломки астероидов, блуждающие в космосе, куски планетезималей, которые так и не стали планетами, — весь этот космический мусор выпадал на поверхности Земли и Луны в виде метеоритов. Предполагают, что в первые 700 млн лет своей жизни наша планета притягивала больше метеоритов, чем ее спутник, из-за своей массы, превосходящей лунную.

Масштабные геологические изменения последующих временных эпох скрыли от нас следы былых космических атак. На поверхности же Луны, а также таких планет, как Марс и Меркурий, остались отметки соударений — кратеры. Они могут быть огромными и напоминать моря размером в тысячи километров или совсем маленькими. Земля в начале своей жизни также подвергалась бомбардировке метеоритами самых разных размеров.

На поверхность нашей планеты за 100 млн лет упало 3 ´ 1022 кг космических обломков — этого хватило бы, чтобы составить грузовой поезд из 500 000 000 000 000 000 нагруженных вагонов! При падении метеоритов их кинетическая энергия переходила в тепловую. Они разрушались и взрывались, нагревая Землю, выделяя газы и смешивая вещества из своего состава с земными.

Тепло, которое при этом выделялось, частично расплавило оболочку молодой планеты, но последовавшие гигантские извержения вулканов почти полностью уничтожили следы космической бомбардировки.

Более 160 метеоритных кратеров найдено на поверхности Земли. Они сразу возникали группами в зонах метеоритных дождей, которые покрывали десятки квадратных километров земной поверхности. Метеоритный дождь — это падение множества обломков одного крупного метеорита.

При этом вместо одного углубления появляется целое поле из них — серия кратеров, направление которой может указать путь, по которому двигались обломки, оказавшись в атмосфере.

Кратеры, как правило, имеют округлую форму, они около 100 км в диаметре и обнесены возвышающимся по краям насыпным валом.

Метеориты достигают Земли по сей день. Фрагменты разрушившегося астероида упали из космоса 15 февраля 2013 г. на город Челябинск в России. Всего на территории этого государства существует 16 крупных кратеров, метеоритное происхождение которых доказано. Их помогают выявить снимки, сделанные со спутников.

В 1908 г. на Землю упал Тунгусский метеорит. Взрыв при этом был сравним с эффектом от взрыва очень мощной водородной бомбы (40–50 мегатонн в тротилловом эквиваленте). В радиусе 25–30 км от места падения были повалены деревья, а на значительной части Евразии заметно свечение неба и облаков. Далеко не всегда падение метеоритов выглядит так катастрофично. Большинство из найденных более скромны по размеру.

Метеориты по своему составу делятся на железные, каменные и смешанного типа (железокаменные). Железные метеориты в своем составе всегда имеют металл никель, анализ содержания которого в найденном камне позволяет признать его небесное происхождение.

Поверхность метеорита хранит следы его прохождения через земную атмосферу. Обломки космических тел проникают в верхние слои атмосферы с чудовищной скоростью — более 11 км/с! Возникающее при этом трение очень велико — летящее тело разогревается и плавится. Встречный поток воздуха мгновенно срывает размягчившийся слой, и за движущимся метеоритом тянется дымовой след — шлейф мелких капелек расплава. Сопротивление воздуха тормозит разогнавшееся тело, снижая его скорость до скорости свободного падения. При этом последний из расплавленных слоев застывает на поверхности небесного камня в виде тонкой (менее 1 мм) пленки, которую называют корой плавления. Она не отличается по своему составу от самого метеорита, но выделяется своей структурой и видом. Кора плавления почти всех метеоритов черного цвета.

В Российской Академии наук существует специальный комитет, который занимается поиском и изучением метеоритов. За долгое время им собрана одна из лучших в мире коллекций небесных камней — ее начало было положено еще в XVIII в. Метеориты собирают во многих городах России, с ними можно познакомиться в краеведческих и геологических музеях.

Десятки и сотни миллионов лет метеоритные обстрелы не только разогревали недра Земли, но и меняли ее облик. Даже процессы в первичной атмосфере, которые сделали ее наконец пригодной для жизни, могли быть вызваны такими небесными камнями. Когда метеорит на огромной скорости входит в плотные воздушные слои, он раскаляется и начинает гореть, при этом выделяются водяной пар и углекислый газ — обычные для многих реакций горения.

Типичный метеорит, попадая в атмосферу Земли, высвобождает около 12% своей массы в виде водяного пара и около 6% углекислого газа, всего 18% — почти пятую часть. Если вспомнить наш воображаемый гигантский поезд, нагруженный метеоритным веществом, которое выпало на планету вскоре после ее рождения, получится, что масса выделившихся газов поместилась бы в 90 000 000 000 000 000 наполненных вагонов. Такое колоссальное количество новых газов, занесенных метеоритами, изменило первичную атмосферу — она обогатилась веществами, которые впоследствии стали строительными материалами для жизни на Земле.

Одно из лучших мест для сбора и изучения метеоритов — ледяные пустыни Антарктиды. Своих камней там очень мало, поэтому чернеющий на снегу обломок, скорее всего, в буквальном смысле упал с неба. Изучение метеоритов настолько важно для развития наших знаний о космосе, что создаются даже специальные машины-роботы, которые будут способны обследовать антарктические просторы в поисках упавших небесных камней.

Сильно увеличив содержание в атмосфере водяных паров и углекислого газа, метеориты повысили общую влажность земной атмосферы и ее температуру. Второе обстоятельство вызвано присутствием углекислого газа и создаваемого им парникового эффекта — о нем мы еще будем говорить не раз. Часть ученых считает также, что метеоритный обстрел из космоса помог образованию в древнем океане крупных органических молекул. Для подтверждения этой гипотезы группа японских ученых провела интересный эксперимент: с помощью специально сконструированной пушки они воспроизводили древнюю метеоритную бомбардировку, обстреливая океан «метеоритами» типичного для космических тел состава (то есть содержащих железо, никель и углерод). Результаты показали, что в воде после такой бомбежки действительно появился ряд органических молекул, в том числе аминокислоты, жирные кислоты и амины.

Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)

В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.

Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.

Однако первичная атмосфера не была похожа на современную.

Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.

В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.

Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.

Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.

Мы не должны удивляться тому, что вода на Земле появилась в виде пара вместе с потоками расплавленной магмы, вырывающейся из щелей коры: и в настоящее время количество воды, которая в связанном виде хранится в земной мантии, столь велико, что значительно превышает объем всех океанов и морей планеты.

Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.

Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.

Источник: SiteKid.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.