В результате взаимодействия всех оболочек земли сформировалась


Земля — 3-я планета от Солнца, расположенная между Венерой и Марсом. Она является самой плотной планетой Солнечной системы, крупнейшей из четырех планет земной группы и единственным астрономическим объектом, который, как известно, содержит жизнь. Согласно радиометрическому датированию и другим способам исследований, наша планета образовалась около 4,54 млрд лет назад. Земля гравитационно взаимодействует с другими объектами в космосе, особенно с Солнцем и Луной.

Земля состоит из четырех основных сфер или оболочек, которые зависят друг от друга и являются биологическими и физическими компонентами нашей планеты. Их научно называют биофизическими элементами, а именно гидросферой («гидро» для воды), биосферой («био» для живых существ), литосферой («лито» для суши или земной поверхности) и атмосферой («атмо» для воздуха). Эти основные сферы нашей планеты далее делятся на различные под-сферы.

Рассмотрим все четыре оболочки Земли более подробно, чтобы понять их функции и значение.

Литосфера — твердая оболочка Земли


В результате взаимодействия всех оболочек земли сформировалась

Литосфера, иногда называемая геосферой, относится ко всем горным породам Земли. Она включает земную кору и верхнюю часть мантии. Выше, литосфера ограничена атмосферой, а ниже — астеносферой (слоем в верхней мантии Земли). Валуны горы Эверест, песок на пляжах Майами и лава, извергающаяся с горы Килауэа на Гавайях, являются примерами компонентов литосферы.

Литосфера является самой твердой сферой нашей планеты. Ее фактическая толщина может варьироваться от примерно 40 км до 280 км. Литосфера заканчивается в момент, когда минералы земной коры становятся вязкими и жидкими. Точная глубина, при которой это происходит, зависит от химического состава горной породы, а также от температуры и давления.

Существует два типа литосферы: океаническая литосфера и континентальная литосфера. Океаническая связана с океанической корой и немного плотнее континентальной литосферы. Континентальная литосфера, связанная с континентальной корой, может быть намного толще, чем океаническая, простираясь на 200 км ниже поверхности Земли.

Наиболее известной особенностью, связанной с литосферой Земли, является тектоническая активность, которая описывает взаимодействие огромных плит литосферы, называемых тектоническими плитами.


Литосфера разделена на тектонические плиты, которые соединяются между собой как зазубренная головоломка. Эти плиты не имеют постоянного расположения; они медленно двигаются. Большая часть тектонической активности происходит на границах этих плит, где они могут сталкиваться, разрываться или пододвигаться друг под друга. Движение тектонических плит стало возможным благодаря тепловой энергии от мантийной части литосферы. Тепловая энергия делает твердую литосферу более эластичной.

Тектоническая активность отвечает за некоторые из самых драматических геологических событий Земли: землетрясения, вулканы, орогенез (горообразование) и глубокие океанические впадины, которые образовались в результате тектонической активности в литосфере.

Гидросфера — водная оболочка Земли

В результате взаимодействия всех оболочек земли сформировалась

Гидросфера — водная оболочка, включающая всю воду на нашей планете. К ней относится вода, которая находится на поверхности планеты, под землей и в воздухе. Гидросфера планеты может быть жидкостью, паром или льдом.

На Земле жидкая вода существует на поверхности в виде океанов, озер и рек. Под землей она встречается в колодцах и водоносных горизонтах, а также как грунтовые воды. Водяной пар наиболее заметен в виде облаков и тумана.

Замерзшая часть гидросферы Земли состоит из льда: ледников, ледяных вершин и айсбергов, и имеет свое название — криосфера.


Вода проходит через гидросферу благодаря циклическому перемещению. Она накапливается в облаках, затем падает на Землю в виде дождя или снега. Эта вода собирается в реках, озерах и океанах. Затем она испаряется в атмосферу, чтобы снова начать цикл. Этот процесс называется гидрологическим циклом.

По оценкам ученых, на нашей планете есть более 1386 млн. км³ воды.

В океанах содержится более 97 % запасов воды на Земле. Остальная часть приходится на пресную воду, две трети которой находится в замерзшем состоянии в полярных регионах планеты и на снежных вершинах гор. Интересно отметить, что, хотя вода покрывает большую часть поверхности планеты, она составляет всего 0,023 % общей массы Земли.

Биосфера — живая оболочка Земли

В результате взаимодействия всех оболочек земли сформировалась

Биосфера состоит из частей Земли, где существует жизнь. Она простирается от самых глубоких корневых систем деревьев, до глубоководных океанических желобов, от пышных тропических лесов до высоких горных вершин.

Поскольку жизнь существует на суше, в воздухе и в воде, биосфера перекрывает все эти сферы. Хотя биосфера имеет высоту около 20 километров, почти вся жизнь сосредоточена примерно от 500 м ниже поверхности океана до 6 км над уровнем моря.

Биосфера существует около 3,5 миллиардов лет. Самые ранние жизненные формы биосферы, называемые прокариотами, выживали без кислорода. Древние прокариоты включали одноклеточные организмы, такие как бактерии и археи.

Биосферу иногда считают одной большой экосистемой — сложным сообществом живых и неживых компонентов, функционирующих как единое целое. Однако чаще всего биосфера описывается как совокупность множества экологических систем.


Атмосфера — воздушная оболочка Земли

В результате взаимодействия всех оболочек земли сформировалась

Атмосфера — это совокупность газов, окружающих нашу планету, удерживаемых на месте земной гравитацией. Большая часть нашей атмосферы находится вблизи земной поверхности, где она наиболее плотная. Воздух Земли на 79 % состоит из азота и чуть менее 21 % — из кислорода, а также аргона, двуокиси углерода и других газов. Водяной пар и пыль также являются частью атмосферы Земли. Другие планеты и Луна обладают очень разными атмосферами, а некоторые вообще не имеют таковой. В космосе нет атмосферы.

Атмосфера настолько распространена, что она почти незаметна, но ее вес равен слою воды глубиной более 10 метров, которая покрывает всю нашу планету. Нижние 30 километров атмосферы содержат около 98 % всей ее массы.

Ученые утверждают, что многие из газов в нашей атмосфере были выброшены в воздух ранними вулканами. В то время вокруг Земли было мало или вообще не было свободного кислорода. Свободный кислород состоит из молекул кислорода, не связанных с другим элементом, таким как углерод (с образованием углекислого газа) или водород (с образованием воды).


Свободный кислород, возможно, был добавлен в атмосферу примитивными организмами, вероятно бактериями, во время фотосинтеза. Позднее более сложные формы растительной жизни добавили больше кислорода в атмосферу. Кислороду в сегодняшней атмосфере, вероятно, потребовалось миллионы лет чтобы накопиться.

Атмосфера действует как гигантский фильтр, поглощая большую часть ультрафиолетового излучения и позволяя проникать солнечным лучам. Ультрафиолетовое излучение вредно для живых существ, и может вызвать ожоги. Тем не менее солнечная энергия необходима для всей жизни на Земле.

Атмосфера Земли имеет слоистую структуру. От поверхности планеты к небу идут следующие слои: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Другой слой, называемый ионосферой, простирается от мезосферы до экзосферы. Вне экзосферы находится космос. Границы между атмосферными слоями четко не определены и изменяются в зависимости от широты и времени года.

Взаимосвязь оболочек Земли

Все четыре сферы могут присутствовать в одном месте. Например, кусок почвы будет содержать минералы из литосферы. Кроме того, будут присутствовать элементы гидросферы, представляющие собой влагу в почве, биосферы как насекомых и растений и даже атмосферы в виде почвенного воздуха.


Все сферы взаимосвязаны и зависят друг от друга, как единый организм. Изменения в одной сфере приведут к изменениям в другой. Поэтому все, что мы делаем на нашей планете, влияет на другие процессы в ее пределах (даже если мы не можем этого увидеть своими глазами).

Для людей, занимающихся проблемами окружающей среды, очень важно понимать взаимосвязь всех оболочек Земли.

Источник: NatWorld.info

Внешние оболочки Земли — атмосфера, гидросфера, литосфера и биосфера развиваются в тесной взаимосвязи между собой.
Основные их составляющие газ, жидкие и твердые вещества, перемешиваясь, переходят из одного состояния в другое. Поэтому в местах соприкосновения оболочек наблюдается постоянное их взаимодействие.

К примеру, понаблюдаем взаимоотношения между атмосферой и биосферой.
Воздух является необходимым условием для жизнедеятельности всех организмов. Люди и животные дышат кислородом воздуха, растения поглощают углекислый газ, производя органические вещества. Вместе с тем, состав газов в атмосфере тесно связан с жизнью организмов. (Вспомните, как образуется кислород в воздухе. )
Живые организмы подвергают верхний слой атмосферы сложным изменениям. Они участвуют в процессе выветривания горных пород. Остатки растений и животных создают в земной коре органические горные породы. В свою очередь, различные вещества земной коры входят в состав организмов. Верхний слой литосферы является жизненной средой для организмов.


Атмосфера и литосфера также тесно взаимосвязаны.
Атмосфера нагревается от солнечных лучей, попадающих на земную поверхность. В этой связи появилась закономерность изменения температуры воздуха в тропосфере с высотой. Пыль и другие мелкие частицы, поднимающиеся с земной поверхности, влияют на прозрачность воздуха и на условия нагревания верхнего слоя земной поверхности. Вокруг поднявшихся в воздух мелких частиц сгущаются водяные пары, образуются облака и т. д.

Взаимодействие земных оболочек бывает не только двусторонним, но многосторонним.

В результате тесного контакта и взаимовлияния атмосферы, литосферы и гидросферы сформировалась особая оболочка Земли — географическая оболочка. Она создает необходимые условия для появления и развития жизни на Земле. На современном этапе развития Земли живые организмы достигли такого уровня, что составляют отдельную оболочку — биосферу.
В географическую оболочку входят измененный под влиянием других оболочек верхний слой литосферы, нижний слой атмосферы, вся гидросфера и биосфера.

Океан с прилегающими к нему воздушной оболочкой и литосферой, с проникающей во все эти оболочки биосферой следует рассматривать как целостную систему сред. Причем эта система находится в постоянном взаимодействии и неразрывном единстве. Таким образом, океан можно рассматривать как арену тесного взаимодействия гидросферы, атмосферы, литосферы и биосферы

Подробно об этом здесь http://www.makvak.com/component/content/article/21-dajving/143-vzaimodejstvie-okeana-s-obolochkami-zemli

Источник: otvet.mail.ru

От Пангеи до Пангеи


Современные астрофизические данные говорят о том, что формирование Земли происходило по механизму горячей аккреции. В результате нагрева от падающих планетных зародышей и распада короткоживущих изотопов молодая планета была горячей, разогретой до достаточно высоких температур. В процессе эволюции Земля остывала – уменьшался средний тепловой поток и средняя температура мантии. Современная температура на границе верхней и нижней мантий составляет 2000—2100 °С, а в конце архея — начале протерозоя (2,6—2,7 млрд. лет назад) достигала 2400 °С. Затем это тепло рассеивалось в виде излучения в окружающее космическое пространство, запас тепловой энергии в недрах уменьшался.

Конвекционные процессы в мантии Земли приводят в движение литосферные плиты. Благодаря этому с определенной периодичностью происходит сборка и распад суперконтинентов. На рисунке приведена схематическая карта последнего из суперконтинентов – Пангеи


Данные о температуре и тепловом потоке из мантии позволяют оценить интенсивность конвекции в нижней мантии. Происходившие при остывании Земли изменения теплового потока даже при практически постоянном температурном перепаде между верхней и нижней мантиями, по современным оценкам, могут приводить к существенным, на 2—3 порядка, изменениям вязкости магмы и числа Рэлея, характеризующего конвективные процессы. В архее из-за высоких значений теплового потока конвекция в нижней мантии была гораздо более интенсивной и близка к конвекции в современной астеносфере, восходящие потоки могли затрагивать и всю мантию в целом, и приводить к общемантийной конвекции, а в итоге – к «тектонике малых плит».

РОЖДЕНИЕ ПЛАНЕТ

Изменения в режимах конвекции, и соответственно, в тектонике плит, приводили к сборке и распаду суперконтинентов. Этот процесс имел периодический характер. Наиболее крупный цикл (600—700 млн лет) можно установить прежде всего по периодам от «Пангеи до Пангеи» и максимумам изотопных датировок геологических пород. Достоверно установлена пермская Пангея IV, «собирание» которой достигло максимума в конце девона — начале карбона, 360 млн лет назад.


спад Пангеи IV начался в триасе около 230 млн лет назад. Cуперконтинент III – Родиния – существовал в интервале 1100—920 млн лет. Предшествующий супер­континент II, называемый Карелий (или Колумбий), существовал около 1800—1650 млн лет. Доказательство существования Суперконтинента I пока еще весьма проблематично, интервал между ярко выраженными максимумами 2680 и 1880 млн лет равен 800 млн лет. Таким образом, оценки варьируют от 690 (645) до 800 млн лет, условно можно принять интервал от Пангеи до Пангеи 700 млн лет.

Непрерывное остывание Земли приводило к перестройке режимов конвекции в мантии. Удивительно то, что приблизительно экспоненциальное падение теплового потока из недр имело следствием хорошо прослеживающуюся периодичность формирования супер­континентов, а следовательно, изменения в конвекции при этом носили так же периодический характер.

Сначала Земля была без Луны…

История Земли как планеты началась 4,55—4,44 млрд лет назад. Длительность первоначального роста и выделения железного ядра решающим образом зависела от динамической вязкости мантии, которая могла изменяться во время аккреции на два-три порядка. Поэтому оценки длительности этого этапа отличаются также на два порядка – от 10 млн лет до 1 млрд лет. Уточнить временные рамки позволили измерения содержания элементов гафния и вольфрама в земных и лунных породах, из которых следует, что земное ядро формировалось практически одновременно с ростом планеты, а именно – в первые 30—50 млн лет ее существования.

Истории образования Земли и ее состояния после аккреции сильно зависит от механизма формирования Луны. Согласно гипотезе мегаимпакта, Луна образовалась примерно 4,48 млрд лет назад в результате удара гипотетической планеты размером с Марс о практически уже сформировавшуюся Землю. К этому времени верхняя оболочка Земли представляла магматический океан глубиной 600—1000 км с тонкой, до 10 км, базальтовой корой, регулярно взламываемой метеоритами. В результате удара часть коры и мантии Земли и столк­нувшегося с ней тела были выброшены на околоземную орбиту, и из них впоследствии сформировалась Луна. Однако, по мнению некоторых исследователей, гипотеза мегаимпакта маловероятна, так как сильный удар массивного небесного тела должен был привести к эксцентриситету орбиты Земли, на порядок превышающему современный.

Так, по представлению художника Николая Ковалева, выглядела Земля в начале своей геологической истории

Согласно другой гипотезе, Луна могла образоваться за счет серии более мелких импактов тел, размером сопоставимых с ней самой. В этой модели Земля могла обладать небольшим по мощности (< 300 км) магматическим океаном. Но и в этом случае, как и в случае одного большого удара, трудно объяснить сохранение выброшенного материала на околоземной орбите и вторичную аккрецию из него Луны.

Наконец, серьезные геохимические и космохимические обоснования имеет гипотеза одновременного образования Земли и Луны в виде двойной планеты.

Все эти три гипотезы различаются по степени возможного возмущения состояния Земли. Мегаимпакт мог привести к наибольшим возмущениям в составе мантии, высокой степени дифференциации во внутреннем строении Земли и ее температуры. Гипотеза одновременного образования Земли и Луны наоборот, предполагает невозмущенное развитие процессов внутренней эволюции обоих небесных тел.

ГАФНИЙ И ВОЛЬФРАМ – МЕТКИ ВРЕМЕНИ

Главным образом за счет падения комет к концу этапа аккреции была создана горячая атмосфера, состоявшая в основном из водорода и метана. В пересчете на воду ее масса могла составлять от 2 до 10 масс современной гидросферы. Но к рубежу 4,4 млрд лет ранняя атмосфера была потеряна за счет интенсивной диссипации водорода в космос, и началось ее окисление. Окисление атмосферы, поверхности Земли, а затем коры и верхней мантии продолжалось и в последующие этапы.

Хадей – юная Земля, океаны без жизни

Интервал от конца аккреции, 4,44 млрд лет, до 3,9 млрд лет носит название Хадей, или догеологическая стадия, поскольку геологическая летопись этого периода практически не сохранилась. В это время происходило наиболее интенсивное остывание планеты, исчезновение магматического океана, существовавшего в объеме, близком к верхней мантии, и разделение мантии на верхнюю и нижнюю. Начала формироваться кора, в том числе континентального типа, образовался Мировой океан на поверхности. Свидетельством существования в это время континентальной коры и океана считаются окатанные (что свидетельствует о наличии воды в жидком состоянии) цирконы с возрастом 4,0—4,2 млрд лет, а также отдельные цирконы, датируемые временем 4,4 млрд лет, выделенные из более молодых осадочных пород. В этих цирконах в некоторых случаях были найдены микровключения алмазов, для которых микроструктура и распределения тория и ванадия сходны с импактными алмазами на Луне. Этот факт говорит об их происхождении в результате интенсивной бомбардировки крупными метеоритами поверхности Земли.

В процессе эволюции планеты изменялось ее внутреннее строение. Мантия разделилась на два резервуара, различающихся режимами и характером конвекции. Оформилось ядро, в нем выделилась твердая часть; появились твердые силикатные слои – кора и антикора, а также твердый слой толщиной до 100 километров, отделяющий нижнюю мантию от жидкого ядра

Время существования магматического океана и его глубина, как указано выше, зависит от механизма образования Луны и интенсивности метеоритной бомбардировки и колеблется в значительных пределах, но после 4,0 млрд лет наличие магматического океана маловероятно. Тем не менее, B. C. Шкодзинский (2009) считает формирование магматического океана мощно­стью до 1000 км важнейшим событием в истории Земли и допускает наличие реликтов этого океана довольно длительное время (см. статью В. С. Шкодзинского в этом выпуске журнала на стр. 12).

Алмазный рубеж

В течение архея, 3,9—2,7 млрд лет назад, остывание мантии и ядра продолжалось, из-за чего появилось внутреннее ядро Земли и заметно, в 1,5—2 раза, усилилась напряженность магнитного поля. Отражением остывания верхних оболочек явилось массовое образование алмазов — 90 % древних алмазов, выносимых кимберлитами, появилось в интервале 3,2—2,9 млрд лет. Это связано, во-первых, с утолщением литосферы и, как следствие, возрастанием давления, создаваемого в твердых недрах весом пород — к середине архея толщина литосферы (кора плюс твердая мантия) превысила мощность 100 км. До этого времени толщина литосферы была 50 км и меньше. Примерно такую же толщину имеет современная океаническая литосфера. Во-вторых, происходило заметное окисление мантии, появились карбонатиты и растворы, обогащенные СО2. Они реагировали с метаном, выделяя углерод, из которого впоследствии формировались алмазы. Таким образом, «алмазный рубеж» является важным показателем изменения теплового режима и окисления мантии.

ГЛУБОКИЙ МАГМАТИЧЕСКИЙ ОКЕАН

В целом к концу архея сформировалось от 20 до 50 % объема континентальной коры.

От «тектоники малых плит» к «тектонике плюмов» и суперконтинентам

Границе архея и протерозоя, отстоящей от наших дней на 2,6—2,7 млрд лет, соответствует один из главных максимумов формирования гранитов и щелочных пород, слагающих кору. Вероятно, в это же время образовался первый суперконтинент, но для установления его контуров и даже самого факта его существования не хватает геологических и палеомагнитных данных. До этого времени режим конвекции в мантии был близок к турбулентному и преобладала «тектоника малых плит». Весь архей, по мнению некоторых исследователей, режим конвекции в мантии был двуслойным, хотя, по другим оценкам, он мог быть скорее хаотичным (высокотурбулентным), но охватывал всю мантию.

В любом случае, на рубеже 2,6—2,7 млрд лет режим конвекции в мантии изменился, и это вызвало вышеописанные, а также и другие крупные последствия.

Из-за смены конвективных режимов появились супер­плюмы (восходящие потоки в мантии) и началась «тектоника плюмов». Этому соответствует первый максимум возрастов мантийных пород. Вероятно, режим двуслойной конвекции в верхней и нижней мантии, если он имел место до этого рубежа, сохранился, но он нарушался крупными струями восходящих супер­плюмов и крупными каплями плавящейся коры из зон субдукции, которые погружались до ядра. Магматические резервуары нижней и верхней мантии, по геохимическим данным, обособились вновь к 2,0—1,8 млрд лет.

Важнейшим процессом, способствовавшим появлению на Земле жизни, является субдукция, или погружение твердой земной коры обратно в мантию. При субдукции осадочный материал и водные минералы заносятся под континенты, их высота над уровнем моря растет из-за «разбухания» мантии, что создает предпосылки для формирования систем рек, делает ландшафт более неоднородным, создавая условия для формирования устойчивых экосистем. По: (Maruyama, Liou, 2005; Superplumes, 2007)

В палеопротерозойский период, 2,6—1,8 млрд лет назад, сформировался основной объем континентальной коры. В конце этого этапа в интервале 1,9—1,7 млрд лет произошли крупнейшие коллизионные процессы тектонических плит, наблюдался второй по величине максимум гранитообразования. В это время произошло формирование суперконтинента, названного «Карелий» или «Колумбий».

Следующие за этим 1,7—0,7 млрд лет назад характеризуются низкой внутренней активностью Земли. В это время произошла перестройка мантийных течений – режим конвекции в мантии изменился от общемантийного к двуслойному, снизилась активность плюмов. В этот же период произошло собирание и распад третьего суперконтинента – Родинии (от рус. «родить»).

«Мертвая Земля» породила жизнь

Специального внимания заслуживает период около 750 млн лет назад. До рубежа 1 млрд лет все извлекаемые метаморфические породы свидетельствовали о достаточно небольшом давлении, существовавшем при их формировании. Примерная глубина, на которой может наблюдаться такое давление – порядка 40—60 км. Возрастом в 750 млн лет датируются породы, для образования которых необходимо более высокое давление. Это свидетельствует об увеличении глубины их формирования, 150—200 км, или, что то же самое, о снижении температуры при той же самой глубине. Например, для глубины 100 км температура могла снизиться от 1000 до 400—600 °С.

Это возможно только в том случае, если скорость субдукции (погружения коры в мантию) заметно повысилась и достигла или превысила современную максимальную скорость субдукции (около 10 см/год).

Ускорение процессов субдукции привело к возможности «затаскивать» водные минералы в мантию в зонах субдукции, что привело к гидратации и разбуханию верхнемантийного клина под континентом, из-за чего произошел подъем континентов и понижение уровня моря. Вследствие повышения разности высот континентов и моря появились системы больших рек, выносимые ими породы расширили шельф, усилилось шельфовое осадконакопление, произошло усиление фотосинтеза и увеличение концентрации углеводородов.

Этапы ранней истории Земли – до появления организмов (Заварзин, 2010). Показано возникновение организмов из «мира РНК» или внеземное их происхождение

Фотосинтез привел к увеличению содержания кислорода в атмосфере, возникновению озонового слоя, защищающего поверхность от жесткого ультрафиолетового излучения, и на Земле создались условия для возникновения жизни на суше.

Перечисленным событиям предшествовало снижение внутренней активности Земли. Этот интервал некоторые авторы (Ш. Маруяма и др.) называют «Мертвая Земля», его особенности объясняются перестройкой конвективных течений и плюмов в мантии. Изменение мантийных течений привело к охлаждению поверхности Земли, и в интервале 750—600 млн лет проявились частые и крупные оледенения, из них, возможно, наиболее крупное – около 640 млн лет назад. Для состояния Земли в этот период применяют определение «snowball Earth» – замерзшая Земля, похожая на снежный шар. Первые гипотезы о возможности такого состояния родились из геохимических данных и палеомагнитных определений ледниковых отложений, которые в ряде случаев оказывались вблизи палеоэкватора. Здесь еще много неясностей и противоречий, поэтому приведенный сценарий глобальных оледенений – один из возможных.

Усиление субдукции в интервале 750—600 млн лет дало вспышку островодужного магматизма, сопровождавшегося масштабными извержениями вулканов, массовое, но очень изменчивое поступление СO2 в атмосферу, ее дополнительное окисление и потепление климата. Начиная с 600 млн лет и эндогенные системы, и климат, и биосфера развиваются по сценариям, сходным с современными.

Таким образом, имеющее непрерывный характер остывание и окисление Земли приводило к ряду разнообразных процессов. Менялись конвективные режимы в мантии, из-за чего собирались и распадались суперконтиненты. Росла толщина литосферы и земной коры, остывала поверхность, формировались моря и, соответственно, – осадочные породы. Кристаллизовавшаяся кора погружалась в зонах субдукции в мантию, поднимая находящиеся над ней континенты. Постепенно геологический характер планеты становился все более спокойным, снижалась средняя температура поверхности, возникли условия для жизни и эволюции живых форм.

Несмотря на то, что остывание Земли носило экспоненциальный характер, происходящие в ней тектонические и геологические процессы демонстрируют периодичность. Существует корреляция между химическим составом, возрастом пород, глубиной и температурой их образования, временем существования суперконтинентов, интенсивностью накопления осадков и рядом других показателей. Это указывает на то, что происходившие на планете процессы взаимосвязаны – геологические изменения поверхности являются следствием взаимодействия внутренних и внешних факторов, таких как активность конвекции в мантии, cолнечная активность и др. Это говорит о целостности происходящих на нашей планете явлений, о том, что Земля является единым организмом, живущим и развивающимся в своих различных аспектах согласованным образом.

Литература

Добрецов Н. Л. Основы тектоники и геодинамики / учебное пособие / Новосибирск: НГУ, 2011.

Wood B. The formation and differentiation of Earth // Physics Today. December 2011. P 40—45.

Монография Николая Леонтьевича Добрецова «Основы тектоники и геодинамики» задумывалась как современный учебник по тектонике и геодинамике для студентов-бакалавров по специальности «геология» к курсу лекций, который читается ее автором на геолого-геофизическом факультете НГУ. Однако по широте и глубине рассмотренных вопросов она, несомненно, полезна и интересна не только для студентов и аспирантов геологических специальностей, но и для специалистов из других областей знаний, связанных с эволюцией нашей планеты.

Добрецов Н. Л. Основы тектоники и геодинамики. Учебное пособие/Новосибирский государственный университет, 2011. 492 стр. ISBN 978-5-94356-990-6В этой книге впервые сделана попытка показать причинно-следственные связи глубинного строения, состава, структуры и взаимодействия всех геосфер Земли как основной причины тектонических движений в земной коре и верхней мантии (тектоносфере). В работе на современном научном уровне показаны основные тектонические элементы строения дна мирового океана, островных дуг, платформ и складчатых поясов. При этом в отличие от классических учебников по тектонике и геодинамике большое внимание уделено модельным расчетам, которые позволяют понять причины формирования крупных структур Земли. В частности на основе моделирования конвекции в верхней мантии показана неизбежность формирования трансформных разломов в срединно-океанических хребтах. Модельные расчеты для зон субдукции позволяют понять причины выведения на поверхность высокобарических метаморфических комплексов, в том числе алмазоносных метаморфических пород, установленных в Кокчетавском метаморфическом комплексе в Северном Казахстане. С учетом данных по современной сейсмотомографии проведено теплофизическое моделирование плавления в зоне субдукции, что позволяет объяснять как особенности эволюции островодужного магматизма, так и характер сейсмичности этих очень тектонически активных зон Земли.

В настоящее время активно развивается новая парадигма геологии – глубинная геодинамика, оценивающая природу глобальных процессов с учетом взаимодействия разноглубинных, вплоть до ядра, оболочек Земли. В различных тектонических процессах показано широкое участие плюмов, горячих полей и супер­плюмов (Зоненшайн, Кузьмин, 1983; Hoffman, 1997; Flower, 2000; Кузьмин и др., 2001; Ярмолюк, Коваленко и др., 2002; Добрецов, 2003). При этом происходят сложные процессы взаимодействия глубинного мантийного магматизма с корой и литосферной мантией с формированием бимодальных вулканических ассоциаций, габбро-гранитных серий и траппов. Учебной литературы по данной проблеме практически нет, в то же время в последние годы крупным магматическим провинциям и их металлогении уделяется большое внимание в зарубежных публикациях (Abbott et al., 2002; Ernst et al., 2004). В данной монографии этому разделу глубинной геодинамики уделено большое внимание. При этом приведен не только фактический материал, но и расчеты термохимической модели плюмов различной мощности, отделяющихся от границы ядро – верхняя мантия (слой D«), и их взаимодей­ствия с различными геосферами. В отдельном разделе приведены данные по эволюции биосферы как одной из геосфер Земли. Этот раздел представляет интерес для палеонтологов и биологов.

Заведующий лабораторией петрологии и рудоносности магматических формаций Института геологии и минералогии, профессор, д. г.-м. н. А. Э. Изох

Источник: scfh.ru

Почва — поверхностный плодородный слой земной коры, образовавшийся в результате взаимодействия литосферы, атмосферы и биосферы в течение длительного времени.

 

 

Почвоведение — наука, изучающая почвы, их происхождение, развитие, состав, свойства, закономерности распространения, формирования, плодородие, их рациональное использование.

 

Основателем почвоведения является выдающийся ученый, профессор Василий Васильевич Докучаев.

 

Почвы образуются из рыхлых горных пород после появления на них растительности, животных и большого количества микроорганизмов.

 

2. плодородие почв. Гумус

 

Плодородие — способность почвы обеспечивать растения элементами минерального питания и водой. Естественная продуктивность почвы напрямую зависит от наличия в нем органической части — гумуса (перегноя), который образуется в результате процесса разложения и окисления остатков растений и животных под воздействием микроорганизмов.

 

3. разнообразие типов почв

 

Анализ почвенных разрезов, образцов основных типов почв. Анализ почвенной карты.

 

Зональное размещение грунтотворних факторов, прежде климата и растительности определяет и зональное распространение почв на земной поверхности.

 

Закрепления изученного материала

 

1. Закончите предложения

 

• Основной особенностью почв, что отличает их от горных пород, есть … (Плодородие).

 

• Плодородие зависит главным образом от количества … (Гумуса).

 

• Самой плодородием отличаются … (Черноземы).

 

• Названия почв обычно определяет их … (Цвет).

 

• В результате хозяйственной деятельности плодородие почв … (Снижается).

 

2. Проблемный вопрос

 

• Как вы понимаете афоризм «Почва — это жизнь»?

 

• Каким образом человек может восстанавливать плодородие почв?

 

• Какие почвы преобладают в вашей местности, и работы по улучшению плодородия почв осуществляются?


Источник: worldofscience.ru

 


Как происходит обмен веществ между внешними оболочками Земли?


1. Взаимодействие земных оболочек. Географическая оболоч­ка. Известно, что внешние оболочки Земли — атмосфера, гидросфе­ра, литосфера и биосфера развиваются в тесной взаимосвязи между собой. Основные их составляющие газ, жидкие и твердые вещества, перемешиваясь, переходят из одного состояния в другое. Поэтому в местах соприкосновения оболочек наблюдается постоянное их взаи­модействие. К примеру, понаблюдаем взаимоотношения между ат­мосферой и биосферой. Воздух является необходимым условием для жизнедеятельности всех организмов. Люди и животные дышат кис­лородом воздуха, растения поглощают углекислый газ, производя органические вещества. Вместе с тем, состав газов в атмосфере тес­но связан с жизнью организмов. (Вспомните, как образуется кисло­род в воздухе.)
Живые организмы подвергают верхний слой атмосферы слож­ным изменениям. Они участвуют в процессе выветривания горных пород. Остатки растений и животных создают в земной коре орга­нические горные породы. В свою очередь, различные вещества зем­ной коры входят в состав организмов. Верхний слой литосферы яв­ляется жизненной средой для организмов.
Атмосфера и литосфера также тесно взаимосвязаны. Вам извест­но, что атмосфера нагревается от солнечных лучей, попадающих на земную поверхность. В этой связи появилась закономерность изме­нения температуры воздуха в тропосфере с высотой. Пыль и другие мелкие частицы, поднимающиеся с земной поверхности, влияют на прозрачность воздуха и на условия нагревания верхнего слоя зем­ной поверхности. Вокруг поднявшихся в воздух мелких частиц сгу­щаются водяные пары, образуются облака и т. д.
Ранее мы рассмотрели взаимодействие земных оболочек. На са­мом деле такое взаимодействие бывает не только двусторонним, но и многосторонним.
В результате тесного контакта и взаимовлияния атмосферы, ли­тосферы и гидросферы сформировалась особая оболочка Земли — географическая оболочка. Она создает необходимые условия для появления и развития жизни на Земле. На современном этапе развития Земли живые организмы достигли такого уровня, что составляют отдельную оболочку — биосферу.

В географическую оболочку входят измененный под влиянием других оболочек верхний слой литосферы, нижний слой атмосферы, вся гидросфера и биосфера.

 

Географическая оболочка характеризуется следующими особенностями:

1)  каждая земная оболочка состоит только из одного вещества: атмосфера — из воздуха, гидросфера — из воды, литосфера — из горных пород, биосфера — из живых организмов. А вещественный состав географической оболочки очень сложный. Туда входят все вещества, названные ранее. Поэтому она характеризуется как комплексная оболочка;

2)  организмы живут только в географической оболочке. Жизнь не распространяется на верхние слои атмосферы и глубокие недра литосферы;

3)  тепло, поступающее на Землю с солнечными лучами, полностью концентрируется в географической оболочке. Для тепла характерно широтное распространение. Такая широтная зональность совершенно отсутствует в верхних слоях атмосферы или глубинных частях литосферы;

4)  хотя географическая оболочка состоит из отдельных составляющих, она является целостной системой. Изменения, возникающие в одних сферах, входящих в географическую оболочку, вызывают изменения в других. Например, вам известно, что появление и развитие жизни на земной поверхности способствовало изменениям в атмосфере, гидросфере и литосфере.

 

2. Компоненты природы. Природный комплекс. Географическая оболочка состоит из горных пород, воздуха, воды, почвы, растений и животных. Эти составные части географической оболочки называют природными компонентами, или географическими компонентами (по-латыни компоненс — составляющий).

Совокупность природных компонентов любой территории составляет целостную систему. Эта система называется природным комплексом, или географическим комплексом.

Каждый компонент природного комплекса тесно взаимосвязан с другими (рис. 82).

 

Взаимосвязь между природными компонентами
Рис. 82. Взаимосвязь между природными компонентами.

Изменение одного из них обязательно приводит к изменению остальных.

 


Для примера представим природный комплекс песча­ной пустыни. Изобилие пес­ка, редкие колючие расте­ния, животные, приспособ­ленные к жизни в песках. Теперь обратим внимание, как изменяется этот при­родный комплекс, если вы­рыть здесь канал и пустить речную воду. Просачиваю­щаяся вода поднимет уро­вень подземных вод и обра­зуются солончаки и озерки. На берегах канала, вокруг озер вырастут камыши, луга, кустарниковые рощи. Вместо различных живот­ных песчаных пустынь по­явятся и приживутся тугай­ные животные. Благодаря изменению влажности и ха­рактера растений вместо песка сформируется пой­менная почва. Заметно изме­нится климат местности, увеличится влажность и жара спадет.


Географическая оболочка — самый большой на земном шаре при­родный комплекс (самая сложная система). Она состоит из взаимоза­висимой системы природных комплексов. Следующими природны­ми комплексами после географического являются материки и Оке­ан. Многочисленные реки, впадающие в Океан, приносят с собой в большом количестве горные породы. (Вспомните, как понижаются горы.) Также ветры с Океана переносят на сушу облака и осадки. (Как происходит круговорот воды в природе?)
Обмен веществ между сушей и Океаном объединяет их в целост­ную планетарную географическую систему. Так как поверхность Океана однообразна, то со стороны кажется, что дальше она не де­лится на природные комплексы. Однако это не так. В каждой части Океана температура воды, соленость, растения и животные, микро­организмы различаются. Это дает возможность разделить поверхность Океана на природные комплексы.
Природные комплексы поверхности суши, наоборот, хорошо про­слеживаются. Суша делится на природные страны, а они на еще более мелкие части. Западно-Сибирская равнина, Сарыарка, Тянь-Шань — примеры природных стран. Небольшие природные комп­лексы: пойма реки, роща, берег озера, овраг и т.п.

 


1. Что называется географической оболочкой?

2. Почему атмосфера и лито­сфера полностью не входят в географическую оболочку?

3. В чем основное отличие географической оболочки от других земных оболочек?

4.Что отно­сится к природным компонентам?

5. Как образуется природный комплекс?

6. Приведите несколько примеров природных комплексов в вашей местнос­ти?

7. Как вы понимаете систему внутренних связей природных комплексов?

8. Проанализируйте по рисунку 82 двустороннюю взаимосвязь между ком­понентами природы (вода и воздух, почва и растения и др.).

9*. Проанализи­руйте двустороннюю взаимосвязь между атмосферой и гидросферой.

Источник: geografiakazakhstana.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.